对英文句子中的单词进行词性标注

概述

词性标注是许多NLP下游的前置任务,比如我需要一句话以动词进行分割,或者单纯想要将每个词的词性作为一项特征,此时便需要用到词性标注。

词性标注的通常做法是基于一个标注语料库进行有监督的训练,通常不同领域的词性标注也不一样,我们介绍两种通用领域的词性标注方法

方法

NLTK

最常用的词性标注方法,但是准确率相对较低

text="I am good."
result=nltk.pos_tag(nltk.word_tokenize(text))

StanfordNLP

安装

首先安装stanfordcorenlp

pip install stanfordcorenlp

在官网上下载CoreNLP压缩包
下载地址

将下载的压缩包中的slf4j-api.jarstanford-corenlp-x.x.x.jarstanford-corenlp-x.x.x-models.jar解压到某一个文件夹下,该文件夹路径将作为api调用模型的路径

使用
text="I am good."
from stanfordcorenlp import StanfordCoreNLP
model=StanfordCoreNLP("../models/StanfordNLP",lang="en")
result=model.pos_tag(text)

还有其他的一些功能,如分词和句法分析等

网页版

一个基于django建立的网站,里面提供了进行常见NLP功能如分词和词性标注的网页交互和api等
链接

参考

python3中使用Stanford NLP工具包

好的,让我们来介绍一下如何使用 NLTK 和 jieba 进行英文分词和词性标注。 首先,我们需要安装 NLTK 和 jieba。可以在命令行使用以下命令安装: NLTK:`pip install nltk` jieba:`pip install jieba` 接下来,我们可以使用 NLTK 的 `pos_tag()` 函数和 jieba 的 `posseg` 模块来分别进行英文文的词性标注。 对于英文,我们可以使用 NLTK 的 `pos_tag()` 函数,示例代码如下: ```python import nltk nltk.download('punkt') nltk.download('averaged_perceptron_tagger') text = "This is a sample English sentence." tokens = nltk.word_tokenize(text) pos_tags = nltk.pos_tag(tokens) print(pos_tags) ``` 输出结果: ``` [('This', 'DT'), ('is', 'VBZ'), ('a', 'DT'), ('sample', 'JJ'), ('English', 'JJ'), ('sentence', 'NN'), ('.', '.')] ``` 其,`pos_tag()` 函数的输入是一个被分词后的单词列表,返回值是一个元组列表,每个元组包含单词和对应的词性标注。 对于文,我们可以使用 jieba 的 `posseg` 模块,示例代码如下: ```python import jieba.posseg as pseg text = "这是一个样例句子。" words = pseg.cut(text) for word, flag in words: print(word, flag) ``` 输出结果: ``` 这 r 是 v 一个 m 样例 n 文 nz 句子 n 。 x ``` 其,`pseg.cut()` 函数的输入是一个句子,返回值是一个生成器,每次迭代产生一个元组,包含分词和对应的词性标注。 需要注意的是,文分词和词性标注的准确性受到语料库的影响。可以使用已有的语料库,也可以根据自己的需求创建和使用语料库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值