灰色系统预测模型GM(1,1),GM(1,n)及Matlab实现

本文介绍了灰色系统预测模型,包括GM(1,1)和GM(1,n)模型,用于处理既有已知信息又有未知信息的系统。GM(1,1)模型通过累加和累减方法建立一阶微分方程进行预测,而GM(1,n)模型适用于多个变量的预测。文章详细阐述了两种模型的建模过程,并提供了Matlab实现的步骤,结果显示GM(1,1)模型对于线性数据的预测效果良好。" 113011280,9209744,CobaltStrike 4.0 后门生成与主机上线操作详解,"['渗透测试', '恶意软件', '网络安全', 'Windows', 'Linux']
摘要由CSDN通过智能技术生成

1.灰色系统的定义:
灰色系统指既含有已知信息又含有未知信息的系统。
2.灰色预测模型的定义:
对灰色系统进行预测的模型。
灰色模型(Grey Model,简称GM模型)一般表达方式为GM(n,x)模型,其含义是:用n阶微分方程对x个变量建立模型。
3.灰色预测模型的目的:
通过把分散在时间轴上的离散数据看成一组连续变化的序列,采用累加和累减的方式,将灰色系统中的未知因素弱化,强化已知因素的影响程度,最后构建一个以时间为变量的连续微分方程,通过数学方法确定方程中的参数,从而实现预测目的。
4.灰色系统预测模型的特点:
无需大量数据样本,短期预测效果好,运算过程简单。
5.灰色系统预测模型的不足:
对非线性数据样本预测效果差。

常用的灰色系统预测模型主要有GM(1,1)和GM(1,n),以下分别对这两种模型展开。
【1】.GM(1,1)模型及其matlab实现

  1. GM(1,1)模型的预测原理是:对某一数据序列用累加的方式生成一组趋势明显的新数据序列,按照新的数据序列的增长趋势建立模型进行预测,然后再用累减的方法进行逆向计算,恢复原始数据序列,进而得到预测结果。
  2. GM(1,1)建模过程:
    (1) 设一组原始数据为这里写图片描述,n为数据个数。对这里写图片描述累加以便弱化随机序列的波动性和随机性,得到新的数列为:这里写图片描述其中,这里写图片描述
    (2) 生成这里写图片描述的邻均值等权数列这里写图片描述 其中,这里写图片描述
    (3) 根据灰色理论对这里写图片描述 建立关于t的白化形式的一阶一元微分方程GM(1,1):
    这里写图片描述
    其中,a,u为待解系数,分别
评论 60
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值