利用Python对电商销售数据进行分析

本文使用Python对kaggle的在线零售业务数据进行分析,包括数据清洗、创建销售金额字段,探究购买商品数最多的国家、交易额最高的国家、销量较好的月份、客单价以及用户消费行为。结果显示英国是主要消费国,销量佳的月份集中在下半年,用户平均消费4次,平均消费金额为2053元,购买产品数量平均为1194件。

一.数据集介绍

此次的数据集来自kaggle的关于在线零售业务的交易数据,该公司主要销售礼品,大部分出售对象是面向批发商。

二.数据集字段介绍

数据包含541910行,8个字段,字段内容为:

InvoiceNo: 订单编号,每笔交易有6个整数,退货订单编号开头有字母’C’。
StockCode: 产品编号,由5个整数组成。
Description: 产品描述。
Quantity: 产品数量,有负号的表示退货
InvoiceDate: 订单日期和时间。
UnitPrice: 单价(英镑),单位产品的价格。
CustomerID:客户编号,每个客户编号由5位数字组成。
Country: 国家的名称,每个客户所在国家/地区的名称。

三.分析内容

1.购买商品数前十的国家是?

2.交易额前十的国家是?

3.哪些月份销量较佳?

4.客单价多少?

5.用户消费行为分析

四. 数据处理分析过程

1.数据清洗

利用Python语言进行数据分析,开发工具有Jupyter Notebook。

导入库,查看数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('data.csv',encoding='ISO-8859-1')
df.head()

在这里插入图片描述

df.info()

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值