Spark使用Java读取mysql数据和保存数据到mysql

项目应用需要利用Spark读取mysql数据进行数据分析,然后将分析结果保存到mysql中。
开发环境:
java:1.8
IDEA
spark:1.6.2

一.读取mysql数据
1.创建一个mysql数据库
user_test表结构如下:

create table user_test (
id int(11) default null comment "id",
name varchar(64) default null comment "用户名",
password varchar(64) default null comment "密码",
age int(11) default null comment "年龄"
)engine=InnoDB default charset=utf-8;

2.插入数据

insert into user_test values(12, 'cassie', '123456', 25);
insert into user_test values(11, 'zhangs', '1234562', 26);
insert into user_test values(23, 'zhangs', '2321312', 27);
insert into user_test values(22, 'tom', 'asdfg', 28);

3.创建maven工程,命名为Test,添加java类SparkMysql
这里写图片描述
添加依赖包

pom文件内容:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>SparkSQL</groupId>
    <artifactId>com.sparksql.test</artifactId>
    <version>1.0-SNAPSHOT</version>
    <properties>
         <java.version>1.8</java.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.24</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.6.0</version>
        </dependency>
        <dependency>
            <groupId>net.sf.json-lib</groupId>
            <artifactId>json-lib</artifactId>
            <version>2.4</version>
            <classifier>jdk15</classifier>
        </dependency>

    </dependencies>

</project>

4.编写spark代码

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;

import java.util.Properties;

/**
 * Created by Administrator on 2017/11/6.
 */
public class SparkMysql {
    public static org.apache.log4j.Logger logger = org.apache.log4j.Logger.getLogger(SparkMysql.class);

    public static void main(String[] args) {
        JavaSparkContext sparkContext = new JavaSparkContext(new SparkConf().setAppName("SparkMysql").setMaster("local[5]"));
        SQLContext sqlContext = new SQLContext(sparkContext);
        //读取mysql数据
        readMySQL(sqlContext);

        //停止SparkContext
        sparkContext.stop();
    }
        private static void readMySQL(SQLContext sqlContext){
        //jdbc.url=jdbc:mysql://localhost:3306/database
        String url = "jdbc:mysql://localhost:3306/test";
        //查找的表名
        String table = "user_test";
        //增加数据库的用户名(user)密码(password),指定test数据库的驱动(driver)
        Properties connectionProperties = new Properties();
        connectionProperties.put("user","root");
        connectionProperties.put("password","123456");
        connectionProperties.put("driver","com.mysql.jdbc.Driver");

        //SparkJdbc读取Postgresql的products表内容
        System.out.println("读取test数据库中的user_test表内容");
        // 读取表中所有数据
        DataFrame jdbcDF = sqlContext.read().jdbc(url,table,connectionProperties).select("*");
        //显示数据
        jdbcDF.show();
    }
}

运行结果:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cQJdK41p-1572347591249)(https://img-blog.csdn.net/20171107200353583?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZmVuZ3poaW1vaGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)]

二.写入数据到mysql中

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;

/**
 * Created by Administrator on 2017/11/6.
 */
public class SparkMysql {
    public static org.apache.log4j.Logger logger = org.apache.log4j.Logger.getLogger(SparkMysql.class);

    public static void main(String[] args) {
        JavaSparkContext sparkContext = new JavaSparkContext(new SparkConf().setAppName("SparkMysql").setMaster("local[5]"));
        SQLContext sqlContext = new SQLContext(sparkContext);
        //写入的数据内容
        JavaRDD<String> personData = sparkContext.parallelize(Arrays.asList("1 tom 5","2 jack 6","3 alex 7"));
        //数据库内容
        String url = "jdbc:mysql://localhost:3306/test";
        Properties connectionProperties = new Properties();
        connectionProperties.put("user","root");
        connectionProperties.put("password","123456");
        connectionProperties.put("driver","com.mysql.jdbc.Driver");
        /**
         * 第一步:在RDD的基础上创建类型为Row的RDD
         */
        //将RDD变成以Row为类型的RDD。Row可以简单理解为Table的一行数据
        JavaRDD<Row> personsRDD = personData.map(new Function<String,Row>(){
            public Row call(String line) throws Exception {
                String[] splited = line.split(" ");
                return RowFactory.create(Integer.valueOf(splited[0]),splited[1],Integer.valueOf(splited[2]));
            }
        });

        /**
         * 第二步:动态构造DataFrame的元数据。
         */
        List structFields = new ArrayList();
        structFields.add(DataTypes.createStructField("id",DataTypes.IntegerType,true));
        structFields.add(DataTypes.createStructField("name",DataTypes.StringType,true));
        structFields.add(DataTypes.createStructField("age",DataTypes.IntegerType,true));

        //构建StructType,用于最后DataFrame元数据的描述
        StructType structType = DataTypes.createStructType(structFields);

        /**
         * 第三步:基于已有的元数据以及RDD<Row>来构造DataFrame
         */
        DataFrame personsDF = sqlContext.createDataFrame(personsRDD,structType);

        /**
         * 第四步:将数据写入到person表中
         */
        personsDF.write().mode("append").jdbc(url,"person",connectionProperties);
        
        //停止SparkContext
        sparkContext.stop();
    }
 }

运行结果:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xy8h8CCz-1572347591250)(https://img-blog.csdn.net/20171107201600768?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZmVuZ3poaW1vaGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)]

代码下载:

转载请标明出处,谢谢!。

如果感觉本文对您有帮助,请留下您的赞,您的支持是我坚持写作最大的动力,谢谢!

  • 3
    点赞
  • 20
    收藏
  • 打赏
    打赏
  • 13
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fengzhimohan

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值