在上一篇文章中,我们介绍了优化算法的基本原理和一些常见的生物启发式算法。另外我们封装了一个16合1的寻优函数。
不过在上一篇中,我们举了一个简单的数值模型作为适应度函数的演示案例,然而在实际的研究中,适应度函数往往要复杂得多。本篇我们就以VMD算法的优化为例,讲一讲这种较为复杂的算法的寻优该怎么做,此外我还提供了修改好的VMD寻优代码,供大家参考使用!
一、为什么要对VMD做参数寻优
在一众的类EMD算法中,对于EMD、EEMD、CEEMD等等这些无法指定分解模态数的算法,经常有同学问我该怎样指定模态数量;当我告诉大家需要使用VMD才能制定模态数量K时,更多的是问我K值该怎么取。人类就是这么的纠结。
今天这篇文章就可以解答这个疑问了。话说回来,K的选取确实比较重要,K 的取值直接决定了分解后的模态分量的数目,若 K 设置得过大,会造成欠分解产生虚假模态;若 K 设置得偏小,会造成欠分解不能充分提取时间序列隐含特征。
此外惩罚因子alpha对分解结果也有重要影响,alpha的取值影响了模态分量的带宽,与带宽成反比,若alpha设置较小,则会出现模态混叠影响特征提取;若alpha设置较大,虽然能避免模态混叠但又造成了局部信息丢失的问题。
在有些研究中,对K和alpha的取值问题,会采用多次实验选取预测/分类效果最优值,但是这十分依赖研究人员的主观判断,缺乏客观的评判标准。因此,对VMD的参数进行优化是十分必要的。
二、VMD寻优的参数和适应度函数
1.待优化参数
就像上边所说,分解模态数K和惩罚因子alpha是比较关键的两个参数。其实还有第三个常用参数tol,不过因为tol对分解结果的影响相对较小,所以在本文中,不将tol作为寻优对象参数。
2.适应度函数
对VMD参数选择优化的关键是适应度函数的设置,用来对分解效果制定量化指标来衡量参数选择的优劣。
纵观众多论文,VMD基本都是使用的信息熵作为适应度函数[1]。
在之前的文章中讲过,信息熵越大,代表不确定性越大,信号中包含的信息量越少。
所以为了最大程度地提取出有效信息,就需要让分解出的各个模态的平均信息熵最小。
至于“信息熵”的具体类型选择就比较多了,我们之前讲过的功率谱熵、奇异谱熵、能量熵、近似熵、样本熵、模糊熵、排列熵,都可以选择。
三、应用kOptimizationAlgorithm函数实现16种优化算法寻优
有了上述定义,我们就可以利用kOptimizationAlgorithm函数来实现对VMD参数的自动寻优了。具体步骤如下:
3.1 定义适应度函数
下边是改好的适应度函数,其中tol值指定为1*10-6。适应度函数主要就三步:
第一步进行VMD分解,这里调用了之前封装过的kVMD函数,当然这里直接用MATLAB的vmd函数也可以,但是需要注意转置,因为MATLAB官方vmd函数得到的imf是按列方向排列的。
第二步是提取各个imf分量的排列熵特征,这里也使用了之前封装的熵特征提取函数,只需要指定一下熵类型名称以及必要的参数设置就行,大家可以更换这一步的熵类型,但是需要注意option也需要对应调整,具体设置方式可以参考这里:(功率谱熵、奇异谱熵、能量熵、近似熵、样本熵、模糊熵、排列熵)
第三步是求各个imf分量的排列熵的均值,并将其作为适应度函数值。
%% 适应度函数,此代码需要根据应用场景做适应性修改
function [fitness] = funFitness(x,dataforFitness)
% 输入:
% x是待优化参数,为数组。x(1)是第一个待优化参数,x(2)是第二个,以此类推。
% dataforFitness为结构体,表示导入到适应度函数的参数,按照数据实际情况设置。可以没有
% 输出:
% fitness是适应度函数
%%
% 待寻优参数读取,注意此处可能有些参数必须为整型,需要取整
alpha = round(x(1)); %alpha
K = round(x(2)); %K
% 导入数据读取
FsOrT = dataforFitness.fs;
data = dataforFitness.data;
try
% 定义目标函数
tol = 1e-6;
[imf,CenFs] = kVMD(data,FsOrT, alpha, K, tol);
% 设置排列熵参数,Pedim为排列熵模式维度,Pet为排列熵的时间延迟,如果不提取排列熵特征可以删除以下两行
option.Pedim = 6;
option.Pet = 1;
featureNamesCell = {'PeEn'}; %要进行特征提取的特征名称,可以根据实际需要进行删减,留下的特征注意拼写正确
fea = genFeatureEn(imf,featureNamesCell,option); %调用genFeature函数,完成特征提取,算出的特征值会保存在fea变量里
fitness = mean(fea);
catch ME
fprintf('发生错误: %s\n', ME.message);
end
end
3.2 设置寻优相关参数
以下代码是写在主程序里的了,必要的参数我都将其作为可调参数抽取出来了,大家可以根据需要进行调整,每个参数的含义在注释里标明了,这里不再赘述。
%% 1.设置寻优相关参数
dim = 2; % 优化参数的个数,这里设定为2,表示有两个需要寻优的参数
lb = [100,2]; % 定义每个优化参数的取值下限,这里的写法代表:alpha下限设置为100,K下限设置为2
ub = [10000,10]; % 定义每个优化参数的取值上限,这里的写法代表:alpha上限设置为10000,K上限设置为10
OAmethod = 'SSA'; % 选择使用的优化算法,这里使用'SSA'即麻雀搜索算法
pop = 3; % 设置优化算法的种群大小
Max_iteration = 40; % 设置优化算法的最大迭代次数
3.3 调用kOptimizationAlgorithm函数实现寻优
以下代码也是写在主程序里,dataforFitness作为结构体用于传递必要的数值,这样做大大提升了代码的灵活性和简洁性,采样频率要根据你的信号情况设置(长周期信号设置为1);dataforFitness.data则是要将你待分解信号的变量名赋值给他。最后一行直接调用即可实现寻优了。
%% 2.调用优化算法函数,传入上述定义的参数
dataforFitness.fs = 1000; %设置采样频率
dataforFitness.data = x; %设置待分解信号
% 返回最优位置Best_pos,最优适应度值Best_score,迭代过程的适应度曲线curve
[Best_pos,Best_score,curve] = kOptimizationAlgorithm(OAmethod, dataforFitness, lb, ub, dim, pop, Max_iteration);
3.4 运行结果
运行完上述程序,将会得到以下结果:
参数寻优结果分别为:2885,4
最佳适应度值为:0.19814
程序运行时间:23.471秒。
如果想尝试其他优化算法,只需要修改OAmethod参数即可。例如改为'GWO'就可以切换为灰狼优化算法。
在实际应用中,我们可以多试几种算法,比较它们的性能,选择最优的一种。同时也可以调整种群数量和迭代次数等参数,权衡计算效率和优化效果。
四、小结
以上是对上篇文章中一行代码实现16种优化算法在VMD算法上的演示,同时也是因为VMD寻优是大家比较常用的一种场景。大家在使用优化算法应用到其他场景时,希望上述文章对大家能有所启发。
当然了,上边VMD寻优的代码我也打包好了,同学们可以在公众号 khscience(看海的城堡)中回复“VMD优化”获取。
参考
- ^[1]晋孟雪.基于改进VMD和深度学习的风电功率预测研究[D].西安理工大学,2023.DOI:10.27398/d.cnki.gxalu.2023.002010.