Stable Diffusion绘画 | 后期处理—图像放大与老旧照片修复

后期处理可以选择「单张照片」、「批量处理」、「批量处理文件夹」,本文以「单张照片」展开说明。

图像放大

上传我自己的一张照片:

  • 可选择1种/2种放大算法,我这里选择2中,其中放大算法2强度设置为0.5
    • 放大算法只考虑「4x-UltraSharp」、「Lanczos」、「R-ESGAN 4x+」这三种即可
  • 建议使用「缩放倍数」,因为按宽高缩放,或对原图进行裁剪,效果不好

出图如下所示:

放大生成后的图片,在24%的情况下,已经跟原图100% 的情况下一样大小,同时放大后,可看到图片被锐化的效果。

放大算法1 与 放大算法2 的设置建议

想出图锐度优先

  • 放大算法1选择「4x-UltraSharp」、「R-ESGAN 4x+」
  • 放大算法2选择「Lanczos」作为细节补充

想出图细节优先

  • 放大算法1选择「Lanczos」
  • 放大算法2选择「Lanczos」作为锐度补充

GFPGAN 与 CodeFormer

这两个都是人脸修复模型。

GFPGAN

上传1张模糊的黑白照片,两个放大算法均选择「无」,勾选「GFPGAN」,可见度设置为1。

放大算法必须关掉,让脸部修复模型单独生效。

点击「生成」时,后台会下载对应的模型,下载速度慢,可以通过以下链接直接下载:

https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth

https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth

https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth

GFPGAN 的模型下载后,放置在SD安装目录\models\GFPGAN后重启WebUI即可

配置及出图如下所示:

CodeFormer

这两个模型,单论脸部修复能力,GFPGAN 效果更好,而 CodeFormer 会对脸部进行略微的改变,并且加以颜色的修复

关闭 GFPGAN,勾选「CodeFormer」,将可见程度设置为1。

点击「生成」时,后台会下载对应的模型,下载速度慢,可以通过以下链接直接下载:

https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth

模型下载后,放置在SD安装目录\models\Codeformer后重启WebUI即可

配置与出图如下所示:

GFPGAN 与 CodeFormer 搭配使用

搭配融合使用时,通过权重来设置融合的百分比。

出图效果如下所示:

今天先分享到这里~


开启实践:SD绘画 | 为你所做的学习过滤

图像扩散是一种修复图像的方法,它可以通过应用不同的扩散过程来减少图像中的噪声和损坏。根据引用,我们可以使用局部自适应滤波器和各向异性扩散来在接近图像边缘的地方进行平滑。各向异性扩散是指在特定方向上进行平滑,其中不同的方向具有不同的权重。 引用中提到,如果使用单位矩阵作为扩散张量,则会得到各向同性扩散,这类似于应用热方程进行图像平滑。然而,也可以使用高斯核对扩散张量进行正则化,这将导致在边缘附近有细长核,并在均匀区域中有类高斯核的图像平滑。 此外,还有一些其他的扩散方法被提出,例如边缘增强扩散(EED)和相干增强扩散(CED)。EED方法通过在垂直于边缘的方向上减小扩散系数来增强边缘。CED方法通过增加沿着相干方向给出的扩散系数来增强相干。 总结来说,diffusion图像修复是通过应用不同的扩散过程来减少噪声和损坏,其中各向异性扩散可以在接近图像边缘的地方进行真正的平滑,而各向同性扩散和其他改进的扩散方法可以在不同方向上调整平滑过程,以改善图像质量和保护边缘。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [图像修复之基于PDE的正则化或扩散基础](https://blog.csdn.net/weixin_44881806/article/details/120883315)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肖遥Janic

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值