大规模标签、层级标签分类问题简单调研

本文概述了大规模多标签分类的几种方法,包括1 VS. All classifier、Label Tree based、Embedding based和Deep Learning based。针对层级性标签,文章探讨了Local approaches(如LCN、LCPN、LCL)和Global approaches,强调了层次信息在模型构建中的作用,并引用了相关研究。此外,还提到了数据集的选择与应用。
摘要由CSDN通过智能技术生成

Extreme Multi Label Classification

整合自知乎三篇文章:

大规模多标签分类,作者:Cppowboy
层级性多元标签文本分类,作者:烛之文
层次多标签意图分类综述,作者:斯多歌

方法综述

大规模多标签分类大致有以下几类解决办法:

  • 1 VS. All classifier

把多标签分类看成多个二分类,为每一个label训练一个二分类模型,其缺点是,各个标签之间相互无关,当标签数量非常非常多的时候,难以训练与标签数量相同的模型。

  • Label Tree based

其思想类似决策树,把所有的标签按树状结构组织起来,从上到下分类,每层只需要训练一个小的分类器,最终分类的叶子节点。这样的缺点是,从上到下的分类过程中,误差可能会累积,导致性能较差。这种方法经常会用到ensemble的模型。

  • Embedding based

假设最后的特征维度是 h h h,类别标签数量是 C C C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值