3004:练2.2 单句春晓

3004:练2.2 单句春晓

【题目描述】

《春晓》是一首有名的诗,其中一句为“春眠不觉晓,处处蚊子咬。”试编一程序,输出诗句。

【输入】

【输出】

改编的诗句。

【输入样例】

【输出样例】

春眠不觉晓,处处蚊子咬。

#include<iostream>                                                           
#include<iostream>
using namespace std;
int main()
{
    cout<<"春眠不觉晓,处处蚊子咬。";
    return 0;

}

要使用Transformer对单句话进行测试,可以按照以下步骤进行操作: 1. 首先,加载训好的Transformer模型。根据引用的代码,你可以使用`train_fuc(mode='Transformer', epochs=3)`来训Transformer模型。 2. 准备要测试的单句话。将句子转化为模型可以处理的向量表示形式。在Transformer中,通常使用词嵌入技术(如Word2Vec或GloVe)来将词语转化为向量表示。然后,可以使用位置编码来表示词语在句子中的位置关系。根据引用的代码,你可以使用`train_fuc(mode='PositionalEmbedding Transformer', epochs=3)`来训带有位置编码的Transformer模型。 3. 将处理好的句子向量输入到Transformer模型中,进行前向传播(即推断)操作。根据问题描述,在文本分类的问题中,只需要使用编码器部分进行推断。因此,可以忽略解码器部分。根据引用的说明,对于文本分类的问题,Transformer的编码器就已经够用了。 4. 在进行前向传播操作后,模型会输出一个表示该句子分类的结果。根据具体的分类任务,可以使用不同的输出层结构(如全连接层)来将模型的输出转化为最终的分类结果。 综上所述,你可以使用训好的Transformer模型,将要测试的单句话转化为向量表示形式,并将其输入到模型的编码器部分进行前向传播操作,最后根据具体任务处理模型的输出结果来进行分类。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Python深度学习14——Keras实现Transformer中文文本十分类](https://blog.csdn.net/weixin_46277779/article/details/127332283)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值