21、强化学习与混合主动式程序内容生成机器学习的应用探索

强化学习与混合主动式程序内容生成机器学习的应用探索

1. 强化学习在程序内容生成中的基础

在程序内容生成中,强化学习有着独特的应用方式。首先,我们来看相关的基础公式。
- 奖励序列 $R$ 可以表示为:
[
R =
\begin{bmatrix}
s_0, a_0, r_0 \
s_1, a_1, r_1 \
\cdots \
s_t, a_t, r_t
\end{bmatrix}
]
这里的 $s$ 代表状态,$a$ 代表动作,$r$ 代表奖励。
- 损失函数 $L$ 为:
[
L = \sum_{s_i,a_i,r_i \in sample(R)} (r_i + \gamma * \max_a Q(s_{i + 1}, a) - Q(s_i, a_i))^2
]
其中,$\gamma$ 是折扣因子,$Q$ 函数表示状态 - 动作对的价值。

使用回放缓冲区可以重新访问之前的情节部分,对其进行更新,从而改进策略的训练。除了简单的均匀采样,还可以对采样进行加权,以优先考虑不同状态。

2. 深度强化学习的方法

在深度强化学习中,除了深度 Q 学习,还有 Actor - Critic 学习方法。
- 深度 Q 学习 :从上述公式和描述可知,它主要学习一个网络来预测策略的 Q 值,并以此为基础制定策略。
- Actor - Critic 学习 :包含两个网络,Actor 网络预测要采取的动作,Critic 网络预

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值