18、分支限界法:原理与实现

分支限界法:原理与实现

在解决优化问题时,我们常常会遇到需要从大量候选解中找出最优解的情况。传统的方法是列出并评估所有候选解,但当候选解的数量非常大时,这种方法的时间复杂度会变得难以承受。分支限界法(Branch and bound)就是为了解决这类问题而提出的一种高效算法。

1. 分支限界法的原理

我们考虑一个集合 $C$,其元素被称为候选解。每个候选解 $c$ 都与一个常量成本 $v(c)$ 相关联,我们的目标是找到使 $v(c)$ 最小的候选解 $c$,这样的候选解被称为最优解。当集合 $C$ 为空时,显然不存在最优解。

传统的解决方法是列出并评估所有候选解,然后选择成本最小的那个。然而,当集合 $C$ 的基数很大时,这种方法的时间复杂度会非常高。分支限界法通过一种更高效的方式来解决这个问题,其基本步骤如下:
1. 划分集合 :将集合 $C$ 划分为若干子集 $C_1, C_2, \cdots, C_n$,并将这些子集收集到一个名为 OPEN 的数据结构中。
2. 评估子集 :为每个子集 $C_i$ 分配一个评估值 $f(C_i)$,该评估值是所有 $C_i$ 候选解实际成本的低估。
3. 选择子集 :选择最有希望的子集 $C_j$(即评估函数 $f$ 值最小的子集)。
4. 划分选中的子集 :将选中的子集 $C_j$ 划分为不同的非空子集 $C_{j1}, C_{j2}, \cdots, C_{jm}$。
5. 评估新子集 :计算每个新

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值