分支限界法:原理与实现
在解决优化问题时,我们常常会遇到需要从大量候选解中找出最优解的情况。传统的方法是列出并评估所有候选解,但当候选解的数量非常大时,这种方法的时间复杂度会变得难以承受。分支限界法(Branch and bound)就是为了解决这类问题而提出的一种高效算法。
1. 分支限界法的原理
我们考虑一个集合 $C$,其元素被称为候选解。每个候选解 $c$ 都与一个常量成本 $v(c)$ 相关联,我们的目标是找到使 $v(c)$ 最小的候选解 $c$,这样的候选解被称为最优解。当集合 $C$ 为空时,显然不存在最优解。
传统的解决方法是列出并评估所有候选解,然后选择成本最小的那个。然而,当集合 $C$ 的基数很大时,这种方法的时间复杂度会非常高。分支限界法通过一种更高效的方式来解决这个问题,其基本步骤如下:
1. 划分集合 :将集合 $C$ 划分为若干子集 $C_1, C_2, \cdots, C_n$,并将这些子集收集到一个名为 OPEN 的数据结构中。
2. 评估子集 :为每个子集 $C_i$ 分配一个评估值 $f(C_i)$,该评估值是所有 $C_i$ 候选解实际成本的低估。
3. 选择子集 :选择最有希望的子集 $C_j$(即评估函数 $f$ 值最小的子集)。
4. 划分选中的子集 :将选中的子集 $C_j$ 划分为不同的非空子集 $C_{j1}, C_{j2}, \cdots, C_{jm}$。
5. 评估新子集 :计算每个新
超级会员免费看
订阅专栏 解锁全文
954

被折叠的 条评论
为什么被折叠?



