智能传感器数据频率检测、变化研究及胎儿监测方法综合分析
在工业和医疗领域,智能传感器数据的处理与分析至关重要。在工业中,通过对机器运行数据的监测可以及时发现故障隐患;在医疗领域,对胎儿健康状况的监测则关乎新生命的安全。下面将详细介绍这两个方面的相关内容。
工业领域:智能传感器数据频率检测与变化分析
在机器状态监测和故障诊断应用中,目前大多数现有方法在从原始数据中学习特征时仍存在困难。
人工神经网络(ANN)
ANN 是一种信息处理方法,在其架构中,隐藏层节点数量、初始权重分配和激活函数起着关键作用。设计神经网络时,需要确定多个不同参数,如每层神经元数量和传递函数等。该技术在机器的工业健康诊断中非常有用,不过在利用智能技术对传感器原始数据进行分析方面还需更多支持。
C# 应用与 ANN
在应用中创建了一个具有 2 个隐藏层节点的人工神经网络。这两个隐藏层节点分别为:
- 校准因子(值):是探测器响应与分析物浓度的比率,用公式 $K = P_{DC}/P_{RF} = (1 -|\Gamma|)\eta$ 表示,其中 $\Gamma$ 是输入系数,$\eta$ 是安装有效效率。在本文中,用于计算拾取区域对长尖峰以及下降区域对短尖峰(有负载和无负载情况下)的响应值。
- 功率变化时的波动时间(时间)。
人工神经元试图模仿人类大脑的生物神经元,神经元通过连接彼此的链路相互作用。节点接收输入数据并对其进行简单操作,操作结果传递给其他神经元,每个节点的输出称为其激活或节点值。每个链路都关联一个权重,ANN 通过改变权重值进行学习。若 ANN 生成期望输出,则无需调整权重;若生成不期望输