- 博客(186)
- 收藏
- 关注
原创 力扣题目100题
"""第一个 >= target 的位置"""ans = midelse:return ans# 左边界:第一个 >= target 的位置# 右边界:第一个 > target 的位置 - 1# 检查是否存在 targetelse:数组有序 → 用二分查找边界左边界:第一个≥ target的位置右边界:第一个≥ target+1的位置再减 1如果算出的区间合法且值等于target,返回,否则返回[-1, -1]。
2026-01-04 16:09:27
675
原创 《LangGraph》57个小项目带你从入门到入坟《五》(代码全开源,一键运行)
模块功能导入路径内存中的短期记忆SQLite 短期记忆(同步)SQLite 短期记忆(异步)内存中的长期记忆ExitStack同步上下文管理contextlib异步上下文管理contextlib。
2025-12-22 20:47:37
819
原创 《LangGraph》57个小项目带你从入门到入坟《四》(代码全开源,一键运行)
使用@toollocation: str = Field(description="城市名称")"""查询当前天气"""# 实现代码消息类型用途来源用户输入用户AIMessage模型响应LLM工具执行结果工具模型流式输出片段LLM (流式)LangChain: LLM 应用开发框架LangGraph: 构建多步骤 Agent 工作流SQLAlchemy: Python SQL 工具包和 ORM。
2025-12-17 13:57:20
660
原创 《LangGraph》57个小项目带你从入门到入坟《三》(代码全开源,一键运行)
本文总结了 文件夹中的 14 个脚本(test_15.py ~ test_28.py)的核心知识点,帮助您快速掌握 LangGraph 的关键概念和实践方法。条件边允许根据状态动态决定下一步执行哪个节点。核心要点:当路由函数返回的不是节点名称时,使用 进行映射。核心要点:使用 LangChain 的 创建提示词模板:2.2 从 LLM 输出中提取 JSON(test_18.py)使用正则表达式从 LLM 返回的 Markdown JSON 块中提取数据:3. 结构化输出(Structure
2025-12-12 12:25:46
618
原创 《LangGraph》57个小项目带你从入门到入坟《二》(代码全开源,一键运行)
使用TypedDict标准化输入输出格式默认行为:状态更新是覆盖操作。
2025-12-02 15:34:33
740
原创 《LangGraph》57个小项目带你从入门到入坟《一》(代码全开源,一键运行)
Python 的TypedDict用于定义具有明确类型的字典结构,这是 LangGraph 状态管理的基础。│ 学习路线图 ││ ││ test_01: LangChain 基础 test_02: TypedDict 类型 ││ │ │ ││ ↓ ││ test_03: StateGraph 基础 ││ │ ││ ↓ ││ test_04: 状态传递 ││ │ ││ ↓ ││ test_05: LLM 集成 ││ │ ││ ↓ ││ test_06: 多节点图 ││ │ │。
2025-11-28 19:37:56
958
原创 【camel】camel多智能体框架项目分析
CAMEL-AI是一个强大的多智能体协作框架,主要包含四大核心模块: 智能体系统:提供ChatAgent等10+专业智能体,支持工具调用和记忆管理 协作框架:通过Workforce系统实现智能体社群协作与任务分配 工具生态:73个专业工具包覆盖网络搜索、浏览器自动化等8大领域 模型支持:30+主流模型平台集成,包括商业API和开源推理方案 项目采用模块化设计,核心代码11.2万行,示例代码3.4万行,适用于构建复杂的多智能体应用系统。
2025-09-21 18:18:06
864
原创 【ollama】模型部署和使用指南
你可以像写Dockerfile一样写Modelfile安装→运行模型→API 调用→自定义模型→ 写 Modelfile。
2025-09-07 17:55:19
627
原创 (paper_reading)RAG-MCP、Camel-Workforce
它不依赖单个智能体,而是组织一个由专业化智能体组成的团队——每个智能体都有自己的优势——在一个单一的、协调统一的系统下。可以快速组装、配置并启动协作型智能体"工作团队",用于任何需要并行化处理、多元化专业知识或复杂工作流程的任务。一定要有的两个系统智能体:task_agent 和 coordinator_agent可选领域专用智能体若干:可添加工具# 3. 创建Workforce并添加Workerdescription="市场研究团队",# 添加SingleAgentWorker。
2025-09-03 10:05:05
883
原创 docter的使用、vscode(cursor)和docker的连接,详细分析说明
本文介绍了Docker的基础使用方法和在Python开发中的实际应用。主要内容包括:1)基本Docker命令,如镜像拉取、容器创建和管理;2)通过案例演示如何创建Python3.11开发环境容器;3)两种安装依赖的方式(容器内安装和定制镜像);4)在Cursor编辑器中连接容器开发的方法;5)项目环境配置管理建议。文章还提供了Docker镜像存储位置的修改方法,适合开发者快速掌握Docker在Python项目中的实用技巧。
2025-08-11 23:29:03
1909
原创 旅游mcp配置(1)
运行uv build,这会在dist/目录生成分发包在仓库目录运行。服务器会启动官网:We do not currently offer reporting API access for retrieving reservation details and white-label/co-brand implementations.(我们目前不提供用于获取预订详情和白标/共品牌实施的报告API访问。无github仓库。在RapidAPI上获取到得。
2025-08-07 23:15:00
526
原创 【多智能体cooragent】CoorAgent 系统中 5 个核心系统组件分析
CoorAgent系统包含5个核心组件,其中4个符合智能体标准:协调者(coordinator)负责请求路由、规划者(planner)进行任务分解、发布者(publisher)控制执行流程、代理工厂(agent_factory)作为元智能体可动态创建新代理。这些组件均具备独立LLM支持、专用prompt模板和自主决策能力。唯一的非智能体组件agent_proxy仅作为代理调用器,负责执行具体代理任务但不具备自主决策能力。系统通过多智能体协作实现复杂任务的自动化处理,其中agent_factory的元智能能力
2025-08-04 23:13:51
1025
原创 【cooragent多智能体】各个单智能体的输入与输出(实际案例)
本文介绍了基于CoorAgent的智能体工作流创建过程,通过一个交通规划智能体的创建案例,详细解析了各节点的输入输出格式和内容。工作流从Coordinator节点开始,判定任务复杂后转交Planner节点规划创建流程;Planner分析需求后决定创建新智能体,并规划了由agent_factory创建智能体和reporter生成报告两个步骤;Publisher节点依次协调各节点执行;agent_factory节点生成了包含路径规划、航班查询等工具的专业交通规划智能体;最终reporter节点输出详细创建报告。
2025-08-04 22:39:40
926
原创 【智能体cooragent】不同的单智能体调用的大模型的推理的输入与输出
输入:模板化处理后的当前状态中的messages,其中主要起作用的是'planner'对新只能听做出的规划。输入:模板化处理后的用户输入,apply_prompt_template('publisher'),再加上'planner'做出的计划。输入:所有智能体架构+需求,在经过模板化处理,apply_prompt_template('agent_proxy')输入:模板化处理后的用户输入,apply_prompt_template('planner')输出:指定下一个节点,可能是新智能体创建(智能体工厂)
2025-08-02 20:45:55
247
原创 【智能体cooragent】新智能体创建相关代码解析
随后在 _run_agent_workflow 中将这个格式转换为 .json 格式,结果为:(转化前后对比)
2025-08-02 20:07:11
272
原创 【智能体cooragent】_process_workflow 结构拆解分析
process_workflow 函数返回一个字典到 run_agent_workflow ,这个返回值共有 7 中类型,分别在7个 yeild 处。如果 agent_name == "agent_factory" and key == "new_agent_name",则返回第四个yeild。current_node = "__end__"时,while循环结束,执行一下节点更新,然后返回yeild。如果是end_of_agent,会直接到end_of_agent地yeild返回。(第三个yeild)
2025-08-02 17:39:48
221
原创 【智能体cooragent】创建 workflow 时 候选 Agent 和 Tool 获取来源详细分析
1. 内置默认 Agent (代码)↓2. JSON 文件 Agent (文件系统)↓3. 用户权限过滤↓4. available_agents 字典↓5. 工作流 TEAM_MEMBERS 列表。
2025-08-02 16:19:40
637
原创 基于cooragent的旅游多智能体的MCP组件安装与其开发
本文介绍了使用Cooragent构建多智能体旅游规划服务的具体配置步骤。首先需要配置AMAP API密钥,然后安装并配置Excel、Filesystem、Word和Image Downloader等MCP服务模块,包括Python依赖安装和服务器设置。完成环境搭建后,通过cli.py创建四个专用智能体:交通规划、行程设计、费用计算和结果整合智能体。最后通过协同工作流程,输入旅游需求(如2025年上海至北京五日游),系统将自动生成包含交通、住宿、景点推荐及预算的完整规划,并输出Word文档保存至本地。
2025-07-26 21:00:27
1112
原创 cursor使用方法
点击:Enter interpreter Path ,选择相应虚拟环境下的 python.exe。:ctrl + shift + p,输入select python interpreter。Cursor进入工作目录后,点击拓展图标,输入python并点击install选项。:ctrl+shift+p,输入select python interpreter。就可以运行 test.py 去测试了。一、使用conda相关环境。
2025-07-26 15:04:40
753
原创 【推荐系统】推荐系统的评估方法
摘要:推荐系统评估方法可分为离线评估、在线评估和用户研究三大类。离线评估通过历史数据模拟推荐过程,常用指标包括HitRate@K和NDCG@K。HitRate@K衡量推荐列表中是否包含至少一个相关物品,计算简单但对排名不敏感;NDCG@K则考虑物品相关度和排名位置,更全面评估排序质量。在线评估通过A/B测试等方法考察实际用户行为,用户研究则通过问卷、访谈获取主观反馈。不同评估方法各有侧重,实际应用中需结合使用以全面评估推荐系统性能。
2025-07-21 13:56:35
1228
原创 【推荐系统】推荐系统常用数据集介绍
本文总结了推荐系统领域常用的公开数据集。第一部分分析了10个主流数据集:MovieLens、Netflix Prize、Amazon Reviews等,涵盖电影、音乐、书籍等不同领域,介绍了各数据集的来源、规模、内容特点和适用场景。第二部分重点研究了7个新兴数据集:Steam Video Games、Microsoft News Dataset等,涉及游戏、新闻、食谱等垂直领域。这些数据集主要来源于学术研究、商业竞赛和平台共享,为推荐算法研究提供了丰富的基准测试资源。文章采用表格对比和详细分析相结合的方式,
2025-07-21 13:53:54
1621
原创 一文搞懂 · 卡尔曼滤波及其变体(KF、EKF、UKF)
本文系统介绍了卡尔曼滤波(KF)及其扩展方法。传统KF通过预测和更新两阶段,在满足线性高斯假设下实现最优状态估计。扩展KF(EKF)通过局部线性化处理非线性系统,而无迹KF(UKF)则采用无迹变换避免求导误差。文章详细对比了三者的特点、实现步骤及应用场景,并通过俯仰角估计等实例说明KF在多源数据融合中的核心作用。文中强调,协方差矩阵是KF的关键,它动态管理估计的不确定性,控制滤波器对模型和观测的信任程度。此外,观测矩阵作为状态空间到观测空间的桥梁,确保了残差计算的维度一致性。这些方法在导航、机器人、控制等领
2025-07-17 15:25:17
5322
1
原创 【医疗电子技术-11】医疗人工智能算法技术
定义:医疗人工智能是指将人工智能技术应用于医疗领域 中,以提高医疗行业的效率和质量。医疗人工智能 的应用可以帮助医生更快地诊断疾病,提高治疗效 果,减少医疗事故,降低医疗成本。医疗人工智能 的发展是医疗行业数字化转型的重要组成部分。特点:医疗人工智能算法技术具有高效、准确、自动化等 特点,能够提高医疗服务的效率和质量,降低医疗 成本,为患者提供更好的医疗体验。医学诊断:人工智能技术可以辅助医生进行疾病诊断,提供更准确的诊断结果,减少漏诊和误诊。手术辅助。
2025-06-18 20:13:22
1310
原创 【医疗电子技术-10】无感式健康监测技术
1、技术定义与核心特点无感式监测:指监测过程无需接触人体或穿戴设备,用户无感知(也称非接触式或无扰式监测)。对比传统手段传统有线/穿戴设备(如Holler心电监测仪):需贴电极、导线束缚,易引起不适、皮肤过敏,且依赖用户依从性。无感式优势✅ 摆脱导线/电极束缚✅ 无皮肤接触问题✅ 无用户依从性要求✅ 工艺更稳定可靠(对比电子皮肤)2、关键监测参数参数技术手段示例心率 / 呼吸动脉波形采集(Arterial waveform)血压波形特征提取、头部PPG(光电容积图)血氧。
2025-06-17 21:58:06
2930
原创 【医疗电子技术-9】可穿戴柔性电子技术
刚性的衬底材料导致了现有可穿戴电子产品中的局限,无法与柔软曲线的人体进行共形整合。理想的可穿戴传感器需要在弯曲、拉伸或扭曲等严重变形时依然保持良好的传感性能。1. 可拉伸材料水凝胶液态金属复合导电材料2. 可拉伸结构波形结构(面外波浪)岛-桥结构(面内结构)折纸/剪纸结构织物结构结构可拉伸,是将传统高导电的材料制备成特殊的结构,从而获得可拉伸 能力。典型案例:钢丝不可拉伸,制成弹簧则具有可拉伸性。
2025-06-16 17:53:29
2274
原创 【医疗电子技术-7.2】血糖监测技术
目前尚未出现精确度和及时性都满足标准的无创血糖产品一方面是传感器的灵敏度、信噪比达不到要求,且信号易受其他因素干扰另一方面,人体生理背景复杂多变,个体之间存在种种差异,测量部位的不同都会影响无创血糖的测量结果基于这些局限,现有的产品大多只能作为血糖数值异常的预警设备尽管无创血糖的前景诱人、市场广阔,但距离它真正可以造福于广大糖友的那一天,仍然有漫长的一段道路。
2025-06-14 21:12:36
1916
原创 【医疗电子技术-7.1】动态血压测量技术
血压(Blood Pressure)是血液流动时对血管壁施加的压力,常以单位面积上的压力(mmHg)表达。收缩压(SBP):心脏收缩时产生的高峰值压力;舒张压(DBP):心脏舒张时的最低压力。平均动脉压(MAP)脉搏波法正推动血压监测向连续化、可穿戴化、智能化短期临床价值:替代有创监测,降低导管相关感染风险长期生态延伸:集成至智慧家居/车载系统,实现慢病预警核心突破点抗运动干扰算法免校准模型将成为下一代设备竞争焦点。
2025-06-14 17:38:24
1962
原创 【医疗电子技术-6】呼吸功能监测与监护技术
呼吸系统的组成鼻、咽、喉、气管、支气管,这些部分构成了上呼吸道和下呼吸道的通道。肺是呼吸系统的关键部分,负责氧气和二氧化碳的交换。肺泡:肺内部的最小结构单位,主要负责气体交换。肺泡的表面有丰富的毛细血管网,负责氧气进入血液和二氧化碳排出。呼吸系统作为生命维持的“发动机”,需要通气、换气、运输和调控等多重环节通畅协同。任一环节出现结构或功能障碍,均可导致低氧血症、二氧化碳潴留,进而引发呼吸性酸中毒、心血管负荷加重等病理改变。
2025-06-14 13:35:55
1568
原创 【医疗电子技术-2】生物医学传感器及检测技术
传感器技术的核心地位与现代科技的关系在信息时代,传感器技术在各类社会活动中扮演着至关重要的角色,几乎所有与信息获取和信息传递相关的工作都离不开传感器。这些技术作为信息采集与转换的核心工具,不仅是现代科技发展的基础性技术之一,也是实现智能化的关键技术。“没有传感器就没有现代科技技术”,这一观点强烈凸显了传感器在现代科学和技术发展中的重要地位。它通过感知世界的各种物理量和信息,改变了人类对自然界的认知。例如,传感器能够实时获取环境中的各种微观和宏观信息,进而让人类能够更好地理解并控制周围的世界。
2025-06-10 14:25:49
2371
原创 【生活中的医学急救】生活中可能会用到的各种急救措施汇总
急性中毒的处理不仅需要迅速识别和处理,及时采取急救措施至关重要。对于不同类型的中毒,采用不同的治疗方法和解毒剂,并进行系统的支持治疗。通过适时的解毒和排毒措施,可以有效减轻患者的病情,避免病情恶化。
2025-06-09 17:44:58
826
原创 【医疗电子技术-1】新型医疗电子和医学人工智能发展现状和趋势
从上述分析来看,医疗电子领域未来的发展需求主要集中在以下几个方面:设备需要更加智能化、小型化,并具备数据分析与预测功能。人工智能与大数据将深入到健康管理疾病预测和个性化治疗中。在资源紧张的情况下,需要通过新型设备提升常见病的管理效率,并通过智能化手段来弥补资源的不足。4P医学模式为医疗设备的发展方向提供了理论支持,促使技术向更精准、个性化的方向发展。这些背景需求为未来医疗电子设备的发展指明了方向,尤其是在老龄化社会、慢性病管理和重大疾病治疗之间的平衡上,技术创新将起到至关重要的作用。
2025-06-08 21:59:37
1510
原创 【解读—论文】基于 12 导联心电图数据的自监督表示学习
本文系统评估了自监督学习在12导联ECG数据上的应用效果,提出了一种优化的CPC架构。研究对比了SimCLR、BYOL、SwAV和CPC三种自监督方法,在PTB-XL等大规模ECG数据集上进行实验,结果表明:1)自监督预训练模型在下游任务中性能优于纯监督模型,宏AUC提升0.5-1.0%;2)CPC方法表现出最佳数据效率,仅需62%标注数据即可达到监督模型全量数据性能;3)模型对生理噪声具有显著鲁棒性,特别是在形态和节律类诊断任务中提升最明显。研究验证了自监督学习可有效缓解ECG领域标注数据稀缺问题,为临床
2025-05-28 08:47:37
1225
原创 【解读—论文】引导性掩码表示学习以捕捉心电图的时空关系
摘要:本文提出ST-MEM(时空掩码心电图建模)框架,通过自监督学习解决心电图(ECG)标注数据稀缺的问题。该模型创新性地将ECG的时空结构融入预训练:1) 采用时空补丁化处理12导联信号;2) 设计导联指示模块区分不同导联;3) 使用导联共享解码器强制学习跨导联时空关联。实验表明,ST-MEM在心律失常分类任务中优于现有方法,尤其在低资源和导联受限场景下表现突出。消融实验验证了各模块的有效性,注意力可视化显示模型能有效捕捉ECG的时空特征。该方法为多变量时序数据表征学习提供了新思路。
2025-05-25 15:27:01
986
原创 【深度学习】Transformer 的应用
文章摘要:本文详细探讨了Transformer模型在自然语言处理(NLP)、计算机视觉(CV)和多模态领域的应用。在NLP领域,BART、BERTSum和SG-Net等模型通过自注意力机制显著提升了机器翻译、文本摘要和阅读理解等任务的性能。在CV领域,Vision Transformer(ViT)和DETR等模型通过全局信息建模,改进了图像分类、目标检测和图像分割任务。在多模态领域,CNN-Transformer和Transformer-Transformer类方法(如M2Transformer和PureT
2025-05-20 22:11:41
1940
原创 【深度学习】目标检测算法大全
R-CNN由Ross Girshick等人在2014年提出,是首批将深度卷积神经网络引入目标检测的经典方法。它将对象检测问题分解为“候选区域生成+分类+回归”三步走流程,有效地利用了深度特征,显著提升了检测精度,但也暴露出计算效率低的问题。Fast R-CNN 由 Ross Girshick 于 2015 年提出,旨在在保持高精度的同时,进一步加速 R-CNN 系列模型的检测速度。它结合了 R-CNN 和 SPPNet 的思想,引入了。
2025-05-12 23:28:39
1371
原创 【深度学习】将本地工程上传到Colab运行的方法
1、将本地工程(压缩包)上传到一个新的colab窗口:如下图中的 2.zip,如果工程中有数据集,可以删除掉。3、cd 到 requirements.txt文件的上层文件夹。4、更新/安装requirements.txt中必要的包。5、cd 到 train.py 文件的上层文件夹。6、执行 train.py 文件。
2025-05-11 18:18:47
397
原创 【深度学习】典型的 CNN 网络
以下是 ResNet 自问世以来,社区和产业界在“残差学习”基础上所作的主要改进与衍生网络,按改进思路可分为“结构改进”“宽度/基数探索”“连接模式创新”“注意力/自适应模块”四大类。
2025-05-03 17:20:57
1628
原创 【深度学习】两种数据集格式(Dataset和ImageFolder)
它的设计使得用户可以处理各种类型的数据,包括文本、图像、音频等。类型数据集适用于多种数据格式,可以存储更复杂的数据结构,灵活性更高,但通常需要手动处理数据格式。是一个专门用于加载图像数据集的类,适用于数据集目录按类别组织的情况,能够自动处理图像和标签。,因为它本身已经实现了对图像数据的处理,并且返回一个由图像和标签组成的元组。它假设数据集目录结构是按类别组织的,每个类别的图像位于各自的子目录中。库加载的,它通常是一个字典,包含多个字段,你需要在。),每个值是该字段的数据(例如图像和标签)。
2025-05-01 00:38:58
1059
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅