Educational Codeforces Round 37 E. Connected Components?(bfs)

E. Connected Components?
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given an undirected graph consisting of n vertices and edges. Instead of giving you the edges that exist in the graph, we give you m unordered pairs (x, y) such that there is no edge between x and y, and if some pair of vertices is not listed in the input, then there is an edge between these vertices.

You have to find the number of connected components in the graph and the size of each component. A connected component is a set of vertices X such that for every two vertices from this set there exists at least one path in the graph connecting these vertices, but adding any other vertex to X violates this rule.
Input

The first line contains two integers n and m (1 ≤ n ≤ 200000, ).

Then m lines follow, each containing a pair of integers x and y (1 ≤ x, y ≤ n, x ≠ y) denoting that there is no edge between x and y. Each pair is listed at most once; (x, y) and (y, x) are considered the same (so they are never listed in the same test). If some pair of vertices is not listed in the input, then there exists an edge between those vertices.
Output

Firstly print k — the number of connected components in this graph.

Then print k integers — the sizes of components. You should output these integers in non-descending order.
Example
input

5 5
1 2
3 4
3 2
4 2
2 5

output

2
1 4

题意:给出n个点,m条不存在的边(除了不存在的边其他边都存在),输出有多少个连通分量,以及每个连通分量里点的个数(从小到大)

解析:这道题没想到可以用二位map做
然后进行bfs,只要跟一个点相连的,是可以互达的,所以我们每次从一个点出发,找到连通分量就好了

   #include <bits/stdc++.h>
#define ll long long
#define pb push_back
#define inf 0x3f3f3f3f
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rep1(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=200005;
map<int,bool>e[N];
vector<int>mp,ans;
int bfs(int v)
{
    int cnt=0;
    queue<int>Q;
    Q.push(v);
    while(!Q.empty())
    {
        int u=Q.front();
        //cout<<u<<' ';
        Q.pop();
        cnt++;
        for(int i=0;i<mp.size();i++)
        {
            v=mp[i];
            if(!e[u][v])
            {
                swap(mp[i],mp.back());
                mp.pop_back();
                --i;
                Q.push(v);
            }
        }
    }
    //cout<<cnt<<endl;
    return cnt;
}
int main()
{
    int n,m,x,y;
    cin>>n>>m;
    for(int i=1;i<=n;i++)mp.push_back(i);
    for(int i=1; i<=m; i++)
    {
        cin>>x>>y;
        e[x][y]=1;
        e[y][x]=1;
    }
    while(!mp.empty())
    {
        int v=mp.back();
        mp.pop_back();
        int x=bfs(v);
        if(x)
        ans.push_back(x);
    }
    sort(ans.begin(),ans.end());
        cout<<ans.size()<<endl;
    for(int i=0;i<ans.size();i++)
        cout<<ans[i]<<' ';
    cout<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值