Codeforces Round #479(DFS)

本文介绍了一种算法,用于确定给定无向图中哪些连通部分形成环状结构。通过深度优先搜索(DFS)检查每个连通部分是否仅包含一个环且所有顶点度数均为偶数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E. Cyclic Components

You are given an undirected graph consisting of n vertices and m edges. Your task is to find the number of connected components which are cycles.

Here are some definitions of graph theory.

An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex a is connected with a vertex b, a vertex b is also connected with a vertex a). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.

Two vertices uand v belong to the same connected component if and only if there is at least one path along edges connecting u and v.

A connected component is a cycle if and only if its vertices can be reordered in such a way that:

  • the first vertex is connected with the second vertex by an edge,
  • the second vertex is connected with the third vertex by an edge,
  • ...
  • the last vertex is connected with the first vertex by an edge,
  • all the described edges of a cycle are distinct.

A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.


There are 6connected components, 2 of them are cycles: [7,10,16] and [5,11,9,15]

.

Input

The first line contains two integer numbers n and m (1≤n≤2⋅105, 0≤m≤2⋅105) — number of vertices and edges.The following m lines contains edges: edge i is given as a pair of vertices vi, ui (1≤vi,ui≤n, ui≠vi). There is no multiple edges in the given graph, i.e. for each pair (vi,ui) there no other pairs (vi,ui) and (ui,vi) in the list of edges.

Output

Print one integer — the number of connected components which are also cycles.

Examples

Input

5 4
1 2
3 4
5 4
3 5

Output

1

Input

17 15
1 8
1 12
5 11
11 9
9 15
15 5
4 13
3 13
4 3
10 16
7 10
16 7
14 3
14 4
17 6

Output

2

Note

In the first example only component [3,4,5]is also a cycle.

The illustration above corresponds to the second example.

题目大意:给出一个无向图(可能是几个连通的部分),找出是环的连通部分(注意:只是一个环,n 个点 n 条边那种,不能有多余的部分)。

无向图DFS时只有树边和返祖边,每次有返祖边时则证明出现了一个环,保证每个连通部分只有一个环且该连通部分每个点的度数为偶数即可。

 

#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 2 * 1e5 + 5;
vector<int> G[maxn];
bool vis[maxn];
int dfs[maxn];
int dfs_time = 0;
int ans;
bool check;
void DFS(int x,int fa)
{
    dfs[x] = ++dfs_time;
    int len = G[x].size();
    if(len & 1) check = false;
    for(int i = 0;i < len; ++i)
    {
        int u = G[x][i];
        if(!vis[u])
        {
            vis[u] = true;
            DFS(u,x);
        }
        else if(vis[u] && u != fa && dfs[x] > dfs[u]) ++ans;
    }
}
int main()
{
    int n,m;
    int result = 0;
    scanf("%d %d",&n,&m);
    int x,y;
    for(int i = 0;i < m; ++i)
    {
        scanf("%d %d",&x,&y);
        G[x].push_back(y);
        G[y].push_back(x);
    }
    for(int i = 1;i <= n; ++i)
    {
        if(!vis[i])
        {
            ans = 0;
            check = true;
            vis[i] = true;
            DFS(i,0);
            if(ans == 1 && check) ++result;
        }
    }
    printf("%d\n",result);
    return 0;
}<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 2 * 1e5 + 5;
vector<int> G[maxn];
bool vis[maxn];
int dfs[maxn];
int dfs_time = 0;
int ans;
bool check;
void DFS(int x,int fa)
{
    dfs[x] = ++dfs_time;
    int len = G[x].size();
    if(len & 1) check = false;
    for(int i = 0;i < len; ++i)
    {
        int u = G[x][i];
        if(!vis[u])
        {
            vis[u] = true;
            DFS(u,x);
        }
        else if(vis[u] && u != fa && dfs[x] > dfs[u]) ++ans;
    }
}
int main()
{
    int n,m;
    int result = 0;
    scanf("%d %d",&n,&m);
    int x,y;
    for(int i = 0;i < m; ++i)
    {
        scanf("%d %d",&x,&y);
        G[x].push_back(y);
        G[y].push_back(x);
    }
    for(int i = 1;i <= n; ++i)
    {
        if(!vis[i])
        {
            ans = 0;
            check = true;
            vis[i] = true;
            DFS(i,0);
            if(ans == 1 && check) ++result;
        }
    }
    printf("%d\n",result);
    return 0;
}

 

 

题目描述 给定一棵 $n$ 个节点的树,每个节点都有一个权值 $w_i$。你需要删去树上的一些边,使得剩下的每个连通块中,所有节点的权值之和不超过 $k$。 求最多能删去多少条边。 输入格式 第一行包含两个整数 $n,k$。 第二行包含 $n$ 个整数 $w_1,w_2,\cdots,w_n$。 接下来 $n-1$ 行,每行包含两个整数 $a,b$,表示节点 $a$ 和节点 $b$ 之间有一条边。 输出格式 输出一个整数,表示最多能删去的边数。 数据范围 $1\le n \le 10^5$ $1 \le k,w_i \le 10^9$ 输入样例1: 5 6 2 3 1 5 4 1 2 1 3 2 4 2 5 输出样例1: 2 输入样例2: 5 3 2 3 1 5 4 1 2 1 3 2 4 2 5 输出样例2: 0 算法1 (dfs) $O(n)$ 首先我们可以想到暴力的做法,即对于每个连通块,暴力枚举删去哪些边,尝试得到最多的删边数。那么如何求解一个连通块内的所有节点权值之和呢?我们可以使用 DFS 遍历树,对于每个节点,求出其子树内所有节点的权值之和,那么以该节点为根的子树内的所有节点权值之和就是该节点自身的权值加上其所有子节点的权值之和。 对于每个连通块,我们枚举该连通块内任意两个节点 $x,y$。如果 $x$ 与 $y$ 之间的路径上的所有边都被删去了,那么 $x$ 和 $y$ 就会分别成为两个新的连通块,这两个新的连通块内所有节点的权值之和都不超过 $k$。因此我们只需要枚举所有的 $x,y$ 对,对于每个 $x,y$ 对尝试删去它们之间的路径上的所有边,看是否能够让 $x$ 和 $y$ 成为两个新的连通块,进而更新答案即可。 时间复杂度 参考文献 python3 代码 算法2 (暴力枚举) $O(n^2)$ blablabla 时间复杂度 参考文献 C++ 代码 class Solution { public: const int N = 1e5+10; int n,k; int h[N],e[N<<1],ne[N<<1],idx; int w[N]; int sum[N]; bool st[N]; int res; void add(int a,int b) { e[idx] = b,ne[idx] = h[a],h[a] = idx++; } void dfs(int u,int father) { sum[u] = w[u]; for(int i=h[u];~i;i=ne[i]) { int j = e[i]; if(j == father) continue; dfs(j,u); sum[u] += sum[j]; } } void dfs2(int u,int father) { for(int i=h[u];~i;i=ne[i]) { int j = e[i]; if(j == father) continue; dfs2(j,u); if(sum[j] <= k) res++; else if(sum[u] - sum[j] <= k) res++; } } void solve() { cin >> n >> k; memset(h,-1,sizeof(h)); for(int i=1;i<=n;i++) cin >> w[i]; for(int i=1;i<n;i++) { int a,b; cin >> a >> b; add(a,b); add(b,a); } dfs(1,-1); dfs2(1,-1); cout << res << endl; } }; int main() { Solution().solve(); return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值