矩阵乘法

一)Fibonacci数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的第n项的快速求法(不考虑高精度).

解法:

考虑1×2的矩阵【f[n-2],f[n-1]】。根据fibonacci数列的递推关系,我们希望通过乘以一个2×2的矩阵,得到矩阵【f[n-1],f[n]】=【f[n-1],f[n-1]+f[n-2]】

很容易构造出这个2×2矩阵A,即:

0 1
1 1

所以,有【f[1],f[2]】×A=【f[2],f[3]】

又因为矩阵乘法满足结合律,故有:

【f[1],f[2]】×A n-1=【f[n],f[n+1]】

这个矩阵的第一个元素即为所求。

至于如何快速求出A n-1,相信大家都会,即递归地:n为偶数时,An=(A n/2)2;n为奇数时,An=(A n/2)2*A。

问题(一)解决。

(二)数列f[n]=f[n-1]+f[n-2]+1,f[1]=f[2]=1的第n项的快速求法(不考虑高精度).

解法:

仿照前例,考虑1×3的矩阵【f[n-2],f[n-1],1】,希望求得某3×3的矩阵A,使得此1×3的矩阵乘以A得到矩阵:【f[n-1],f[n],1】=【f[n-1],f[n-1]+f[n-2]+1,1】

容易构造出这个3×3的矩阵A,即:

0 1 0
1 1 0
0 1 1

问题(二)解决。

(三)数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的第n项的快速求法(不考虑高精度).

解法:

仿照前例,考虑1×4的矩阵【f[n-2],f[n-1],n,1】,希望求得某4×4的矩阵A,使得此1×4的矩阵乘以A得到矩阵:

【f[n-1],f[n],n+1,1】=【f[n-1],f[n-1]+f[n-2]+n+1,n+1,1】

容易构造出这个4×4的矩阵A,即:

0 1 0 0
1 1 0 0
0 1 1 0
0 1 1 1

问题(三)解决……

(四)数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的前n项和s[n]的快速求法(不考虑高精度).

解法:

虽然我们有S[n]=F[n+2]-1,但本文不考虑此方法,我们想要得到更一般的方法。

考虑(一)的矩阵A,容易发现我们要求【f[1],f[2]】×(A+A2+A3+…+AN-1)。很多人使用一种很数学的方法构造一个2r*2r(r是A的阶数,这里为2)的矩阵来计算,这种方法比较麻烦且很慢,这里不再介绍。下面考虑一种新方法。

仿照之前的思路,考虑1×3的矩阵【f[n-2],f[n-1],s[n-2]】,我们希望通过乘以一个3×3的矩阵A,得到1×3的矩阵:

【f[n-1],f[n],s[n-1]】=【f[n-1],f[n-1]+f[n-2],s[n-2]+f[n-1]】

容易得到这个3×3的矩阵是:

0 1 0
1 1 1
0 0 1

然后…………容易发现,这种方法的矩阵规模是(r+1)*(r+1),比之前流行的方法好得多。

(五)数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的前n项和s[n]的快速求法(不考虑高精度).

解法:

结合(三)(四),容易想到……

考虑1×5的矩阵【f[n-2],f[n-1],s[n-2],n,1】,

我们需要找到一个5×5的矩阵A,使得它乘以A得到如下1×5的矩阵:

【f[n-1],f[n],s[n-1],n+1,1】

=【f[n-1], f[n-1]+f[n-2]+n+1,s[n-2]+f[n-1],n+1,1】

容易构造出A为:

0 1 0 0 0
1 1 1 0 0
0 0 1 0 0
0 1 0 1 0
0 1 0 1 1

然后……问题解决。

一般地,如果有f[n]=p*f[n-1]+q*f[n-2]+r*n+s

可以构造矩阵A为:

0 q 0 0 0
1 p 1 0 0
0 0 1 0 0
0 r 0 1 0
0 s 0 1 1

更一般的,对于f[n]=Sigma(a[n-i]*f[n-i])+Poly(n),其中0<i<=某常数c, Poly (n)表示n的多项式,我们依然可以构造类似的矩阵A来解决问题。

设Degree(Poly(n))=d, 并规定Poly(n)=0时,d=-1,此时对应于常系数线性齐次递推关系。则本方法求前n项和的复杂度为:

((c+1)+(d+1))3*logns

 

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/cw15868388608/archive/2010/02/07/5295531.aspx

PKU3070-Fibonacci:最经典的递推题,由F[n] = F[n-1] + F[n-2],常系数递推式右边有两项,所以向量和矩阵的规格都为2。容易如下递推:

矩阵二分快速幂计算Ak即可。

HDU3117-Fibonacci Numbers:后四位的同上题,前四位用公式:

HDU2855-Fibonacci Check-up:多校联合赛的一道题,那个公式化简了半天没化出来,最后迫于无奈暴力了一下,发现规律了:只要知道如下结论就和最上面那题一样了:

 

HDU1575-Tr A:Tr A表示方阵A的迹(主对角线元素之和),求Tr(Ak) % 9973。

 

由于k最大有10^9,所以只能用矩阵二分快速幂得到Ak,最后求和即可。

PKU3233-Matrix Power Series:求Sn = A + A2 + A3 + … + An

首先我们能矩阵二分快速幂计算出Ak,那么我们对S再进行二分:

当n % 2 != 0则计算An+S(n-1),当n % 2 == 0时计算S(n/2)*(An/2+E),这样就可以在log(n)的时间里算出Sn

代码:

Mat sum(int x)//A^1+A^2+...+A^x
{
    if (x == 1)
        return A;
    if (x & 1)
        return (A^x)+sum(x-1);
    else
        return sum(x/2)*((A^(x/2))+E);
}

HDU2604-Queuing:推出递推式构造矩阵:

HDU1757-A Simple Math Problem:按题意所给的函数递推构造矩阵:

 

 

 

 

 

 

HDU2256-Problem of Precision:按题目所给的式子算出前几项找规律,不知道有没有更好的数学证明:

HDU2294-Pendant:题意求长为n的挂件一定包含k种颜色的方案数,应该算DP+矩阵优化,第一次这么做竟然1Y,很高兴:

 

HDU2276-Kiki & Little Kiki 2:按shǎ崽大牛的话说是隐藏比较深的题,不过在纸上小推了一下就找到了规律:因为当某个位的左边是1时该位0->1,1->0,左边是0时该位0->0,1->1,不难发现当考虑线性结构的话有f[i] = (f[i] + f[i-1]) % 2,而题目是环形结构,只需对两端的点考虑特殊情况即可:f[i] = (f[i] + f[(n+i-2) % n + 1]) % 2:

 

 

 

 

 

FZU1692-Key problem:A(i)=A(i) + L*A(i+n-1)%n + R*A(i+1)%n这种环形权值改变问题都可以和上题一样构造矩阵来解:

 

 

以上两题的矩阵都有一个特点就是矩阵的每行都是循环同构的,也就是可以通过对矩阵某一行右移一位从而得到该行的下一行,这样在计算矩阵乘法的时候只需要用o(n^2)的时间来计算第一行的相乘后的行向量,再花o(n^2)的时间计算出将接下来各行平移复制出即可:

代码如下:

Mat operator*(Mat a,Mat b)
{
    Mat c;
    for (int i = 0;i < 1;i++)
        for (int j = 0;j < n;j++)
        {
            c.mat[i][j] = 0;
            for (int k = 0;k < n;k++)
                if (a.mat[i][k] && b.mat[k][j])
                    c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
        }
    for (int i = 1;i < n;i++)
    {
        c.mat[i][0] = c.mat[i-1][n-1];
        for (int j = 1;j < n;j++)
            c.mat[i][j] = c.mat[i-1][j-1];
    }
    return c;
}

下面是几个给出F[n]的递推式,求S[n] = F[n] + F[n-1] +……+F[1]的题目,方法有两个:

1.增加一维S[n],重新利用S[n-1]和F[n]、F[n-1] ……、F[1]构造S[n]的函数。
2.构造,末矩阵的右上角元素即为S[n]。

3.特殊求和

代码:

Mat sum(int x)//A^1+A^2+...+A^x
{
    if (x == 1)
        return A;
    if (x & 1)
        return (A^x)+sum(x-1);
    else
        return sum(x/2)*((A^(x/2))+E);
}

FZU1683-纪念SlingShot:用方法1:

HDU1588-Gauss Fibonacci:较难,用方法2或方法3,答案为:

HDU3306-Another kind of Fibonacci:求和递推,用方法1巧妙地构造:

HDU2971-Tower:公式和上一题一样,把x = 2*a2和y = -1代入上面的公式即可,注意负数要加MOD变正。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值