堆的使用

堆不同于Heap,在算法中,它是一种数据结构。它存储成数组,逻辑上可以看做一个近似的完全二叉树。

最大堆的性质:父节点的值大于等于子节点的值。

最小堆的性质:父节点的值小于等于子节点的值。


下面都是基于最大堆讨论:


1. 给定一个无序数组A,维护第i个元素堆的性质算法可表示为:

MAX_HEAPITY(A, i){
l=LEFT(i)
r=RIGHT(i)
if(l<=A.heap-size and A[l]>A[i])
largest=l
else
largest=i
if(r<=A.heap-size and A[r]>A[largest])
largest=r
if(largest != i)
exchange A[i] and A[largest]
MAX_HEAPITY(A, largest)
}


时间复杂度为O(lgn)


2. 把一个无序数组A建成堆的算法:

BUILD_MAX_HEAP(A){
A.heap-size=A.length
for(i=A.length/2 to 1)
MAX_HEAPIFY(A, i)
}


建堆的时间复杂度是O(n)


3.堆排序算法

HEAPSORT(A){
BUILD_MAX_HEAP(A)
for(i=A,length to 2){
exchange A[1] with A[i]
A.heap-size=A.heap-size-1
MAX-HEAPITY(A, 1)
}
}


堆排序算法的时间复杂度为O(nlgn)


问题一:给你一个无序数组A,求最小的K个数

思路:创建一个K个数组成的最大堆,然后若堆外面的元素小于A[0],替换A[0]和该元素,并重新调整最大堆,尝试所有堆外元素后,该堆中所有元素就是最小的K个数。

代码如下:

void MAX_HEAPITY(vector<int>& A, int heapsize,int i){
    int l=2*i+1;
    int r=2*i+2;
    int largest=i;
    if(l<heapsize && A[l]>A[i])
        largest=l;
    if(r<heapsize && A[r]>A[largest])
        largest=r;
    if(largest!=i){
        int temp=A[i];
        A[i]=A[largest];
        A[largest]=temp;
        MAX_HEAPITY(A,heapsize,largest);
    }
}
void BUILD_MAX_HEAP(vector<int>& A, int heapsize){
    for(int i=heapsize/2-1;i>=0;i--){
        MAX_HEAPITY(A,heapsize,i);
    }
}
vector<int> findKmin(vector<int>& A, int length, int k){
    if(k>=length)
        return A;
    BUILD_MAX_HEAP(A,k);
    for(int i=k+1;i<length;i++){
        if(A[i]<A[0]){
            int temp=A[i];
            A[i]=A[0];
            A[0]=temp;
            MAX_HEAPITY(A,k,0);
        }
    }
    return A;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值