总时间限制:
1000ms
内存限制:
65536kB
描述
将正整数n拆分为若干个互不相等的自然数之和,问如何拆分可以使得它们的乘积最大?
输入
一个正整数n。n <= 10000。
输出
一行,包含若干个互不相等的自然数——乘积最大的一种拆分方案。这些自然数需从小到大输出,两个自然数之间用单个空格隔开。
样例输入
15
样例输出
2 3 4 6
//乘积最大,就是从2开始拆分即可。
#include<bits/stdc++.h>
using namespace std;
int a[10005];//盛放拆分得到的因子
int cnt;
int main(){
int n;
cin>>n;
if(n==1){
cout<<n;
return 0;
}
//要使得拆分后得到的乘积最大,那么拆分因子不考虑1,因为对乘积毫无贡献
//还使得可以分配的和减小了
for(int i=2;i<=n;i++){
if(n>=i){
a[cnt++]=i;
n-=i;
}
}
for(int i=cnt-1;i>=0;i--){
if(n){
a[i]++;
n-=1;
}
}
if(n)a[cnt-1]++;
//这样仍然可能有剩余,但最多剩余1, 因为再多就足够构成下一个乘数k+1
//的了,同样为了避免重复,我们只能将这个1加在最大的乘数上。
for(int i=0;i<cnt;i++)cout<<a[i]<<" ";
return 0;
}