力扣Python方法解析

本文介绍了四个编程问题:数组中两数之和的哈希表解决方案、链表相加的模拟和递归方法、无重复字符子串的滑动窗口算法以及合并两个正序数组找中位数的深度优先搜索策略。
摘要由CSDN通过智能技术生成

1.两数之和

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target  的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:

输入:nums = [3,2,4], target = 6
输出:[1,2]
示例 3:

输入:nums = [3,3], target = 6
输出:[0,1]

方法一:暴力解法,通过两个for循环,然后进行一个判断来获得正确的答案,此方法复杂度较高为O(n^2)  注意:使用双重循环时间应注意迭代对象的起始。

class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
       for i in range(0,len(nums)):
           for j in range(i+1,len(nums)):
               if nums[i] + nums[j] ==target:
                    return [i,j]

方法二:哈希表,建立一个哈希表,通过target-nums[i] 来判断是否哈希表内有答案,若无将该值添加进去。 

class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
       ind={} #建立一个哈希表
       for i, num in enumerate(nums):
                if target - num in ind: #判断是否在哈希表内
                    return [ind[target - num], i]
                ind[nums[i]] = i

2.两数相加

给你两个非空的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。

请你将两个数相加,并以相同形式返回一个表示和的链表。

你可以假设除了数字 0 之外,这两个数都不会以 0 开头。

方法一:模拟解法

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
class Solution:
    def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:
        result = ListNode() #初始化一个新链表
        carry, curr = 0, result #初始化进位,设置curr为指针
        while l1 or l2 or carry:
            s = (l1.val if l1 else 0) + (l2.val if l2 else 0) + carry
            carry, val = divmod(s, 10)
            curr.next = ListNode(val)
            curr = curr.next
            l1 = l1.next if l1 else None
            l2 = l2.next if l2 else None
        return result.next

 方法二:递归

class Solution:
    def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:
    if  l1 is None:
        return l2
    if  l2 is NoneL
        return l1
    l1.val += l2.val
    if l1.val >=10:
        l1.next = self.addTwoNumbers(ListNode(l1.val // 10),l1.next)
        l1.val %= 10
    li.next = self.addTwoNumbers(l1.next,l2.next)
    return l1

3.无重复字符的最长字串

给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。

示例 1:

输入: s = "abcabcbb"
输出: 3 
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。
示例 2:

输入: s = "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。

这是一个经典的利用滑动窗口解决的问题,是属于不定长类型的问题。

class Solution:
    def lengthOfLongestSubstring(self, s: str) -> int:
            #Step1:定义需要维护的变量
            max_len = 0
            hashmap = {}
            #Step2:定义窗口的首尾端,然后滑动窗口
            right = 0
            for left in range(len(s)):
            #Step3:更新需要维护的变量,max_len,hashmap
                hashmap[s[left]] = hashmap.get(s[left],0) +1
                if len(hasnmap) == left-right+1:
                        max_len = max(max_len,left-right+1)
            #Step4:根据题意,题目的窗口可变:这个时候一般涉及到窗口是否合法的问题
            #这个时候要用一个while不断移动窗口左指针,从而剔除非法元素直到窗口合法
            # 当窗口长度大于哈希表长度时候 (说明存在重复元素),窗口不合法
            # 所以需要不断移动窗口左指针直到窗口再次合法, 同时提前更新需要维护的变量 (hashmap)
                while left - right +1>len(hashmap):
                    head  = s[start]
                    hashmap[head] -=1
                    if hashmap[head] ==0:    
                            del hashmap[head]
                    right +=1
             return max_len

4.寻找两个正序数组的中位数:

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n)) 。

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

 我们把题目看为求第k小的数:

class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
        def dfs(nums1,i,nums2,j,k)->float:
            if(len(nums1)-i)>len(nums2)-j:
                return dfs(nums2,j,nums1,i,k)
            if len(nums1)==i:
                return nums2[j+k-1]
            if k==1:
                    return min(nums1[i],nums2[j])
            si = min(i + k // 2, len(nums1))     # 注意越界, 第一个列表不够取k/2个数的时候,全部取出来即可
            sj = j + k//2
            if nums1[si - 1] < nums2[sj - 1]:
                return dfs(nums1, si, nums2, j, k - (si - i))
            else:
                return dfs(nums1, i, nums2, sj, k - (sj - j))
        tot = len(nums1) + len(nums2) # 总长度
        # 如果为奇数
        if(tot & 1):
            return dfs(nums1, 0, nums2, 0, tot // 2 + 1)
        else:
            left = dfs(nums1, 0, nums2, 0, tot // 2)
            right = dfs(nums1, 0, nums2, 0, tot // 2 + 1)
            return (left + right) / 2

力扣是一个在线的编程题库,在其中有各种算法和数据结构的题目,供程序员进行练习。力扣题库支持多种编程语言,包括Python力扣Python格式是指在力扣平台上使用Python语言解答问题时需要注意的一些细节和规范。以下是一些力扣Python格式的要点: 1. 导入模块:根据题目需要,导入相应的Python模块。常见的模块如:math、collections等。 2. 主函数:在解题时,将代码写在一个主函数中。通常命名为def main()。 3. 输入输出:遵循力扣的输入输出格式。使用input函数获取输入数据,使用print函数输出结果。 4. 命名规范:遵循Python的命名规范。变量和函数名采用小写字母与下划线的组合,以便于代码的可读性。 5. 注释:在关键代码处添加注释,描述代码功能和思路。这不仅方便自己理解和维护代码,也方便他人阅读。 6. 缩进:使用统一的缩进风格,通常为4个空格或者1个制表符。 7. 算法实现:根据题目要求,选择合适的算法进行实现。可以使用循环、条件判断、递归等常见的编程结构。 8. 异常处理:对于可能出现异常的地方,使用try-except语句进行异常处理。 9. 提交代码:在完成代码编写后,将代码复制到力扣平台的代码编辑器中,然后点击提交按钮进行代码评测。 总之,力扣Python格式主要是指在力扣平台上使用Python语言解题时需要遵守的编码规范和格式要求。遵循这些规范可以提高代码的可读性和可维护性,从而更好地解决问题。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吹吹晚风-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值