L1正则化和l2正则化

深度学习模型的目的:

1 最小化误差

拟合训练数据

2规则化参数

防止过拟合

 

l0规范

创造更加稀疏的权重矩阵,使模型更加的简单,求解困难

 

 

l1范数

曼哈顿范数

视觉:绝对偏差和(Sum of AbsoluteDifference,SAD)

 

误差:平均绝对误差(MAE,mean absolute error)

深度学习:中使所有权重之和

使用场景,使权重更加稀疏化

而正由于L1会倾向于让某些theta为0,所以,仅仅从优化函数的角度,他倾向于忽视某些特征,从而不一定达到全局最优

l2范数

所有范数中最流行的是l2-norm。总体上,它用于工程和科学领域的方方面面。基本定义如下,l2-norm:

它的平方形式,在计算机视觉领域为平方差的和(Sumof Squared Difference,SSD)

 

它最出名的应用是在信号处理领域,为均方误差(Mean-SquaredError,MSE),它被用来计算两个信号的相似度,质量(quality)和关系。MSE为:

使用 L2则会充分考虑每一个特征值,更容易达到全局更优

softmaxå·¥ä½å¾

softmax+交叉熵=softmax loss

只在真实样本处预测,不论其他的值。

案是真实标签对应的位置的那个值是1,其他都是0。所以结果为:

以e为底数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值