计算机视觉:关于Graph cuts的简介及相关资源

计算机视觉:关于Graph cuts的简介及相关资源

原创  2010年03月03日 10:10:00

 

【简介】

Graph Cuts 不等于 graph cut(如 min cut、normalized cut、RatioCut), 是最近在计算机视觉中研究和应用比较多的energy minimization(能量函数最小化)优化算法,典型的用于stereo matching, image restortion, texture synthesis等应用。

 

这个优化算法用来解 markov Random Field. 有实验<Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters>显示,Graph Cuts比用Belief Propagation更好,比用dynamic programming(只用1D求解), gradient decedent, simulated annealing, etc 要好得更多;特别是使用a-b-swap, 和 a-expansion的时候。

 

【原理】

 

 

  • <What energy functions can be minimized via graph cuts> (Kolmogorov PAMI '04). 本文首先介绍了需要通过graph cut最小化的能量函数的特性。虽然是二进制变量但是很容易推广到其他方面。详细描述了通过graphcut最小化的能量函数。并提供了最小化能量函数的通用构建。最后给出了最小化二进制能量函数的必要条件。

 

 

 


【应用】

Graph cuts最主要的应用是图像分割。

在Boykov 和 Kolmogorov 俩人的主页上就有大量的code。包括maxflow/min-cut、stereo algorithms等算法:

http://vision.csd.uwo.ca/code/

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html

 

以及olga. Veksler的

http://www.csd.uwo.ca/faculty/olga/code.html

 

【toolkit】

  • Lazy Snapping
  • GrabCut
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值