链式UGM的Demo

翻译自【https://www.cs.ubc.ca/~schmidtm/Software/UGM/chain.html】 上一个demo中说明的方法在计算节点数和状态数时需要指数级的时间复杂度,因此当节点或者状态数过大时不实用。在这个demo中,我们考虑图结构为链式时的清醒。利用链式结构具有的条件...

2019-01-27 14:41:35

阅读数 19

评论数 0

一个小的UGM的Demo

翻译自【https://www.cs.ubc.ca/~schmidtm/Software/UGM/small.html】 在这个demo中,我们使用一个非常简单的无向图模型(UGM)来表示一个简单的概率场景,来说明怎样把模型应用于无向图中,怎样在模型里实现解码,推理以及采样。 学生作弊案 这里有四...

2019-01-26 18:43:08

阅读数 53

评论数 0

moban 欢迎使用CSDN-markdown编辑器

moban @TOC 欢迎使用Markdown编辑器 你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。 新的改变 我们对Markdown编辑器进行了一些功能拓展与语法支持,...

2019-01-26 16:42:04

阅读数 13

评论数 0

markdown语言样例

欢迎使用Markdown编辑器写博客 本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和图片上传 LaTex数学公式 UML序列图和流程图 离线写博客 导入导出Markdown文...

2018-08-22 18:22:25

阅读数 75

评论数 0

用pytorch实现一个神经网络(一)

对于图像数据的resize问题: pytorch里有几种resize数据的方法: 1.torchvision.transforms.Resize:这个我始终没用成,好像是服务器上安装的anaconda包里的函数不太对。这个函数是对于PIL图像进行操作的。 2.对于numpy.ndarray的...

2017-12-21 22:19:14

阅读数 1495

评论数 0

语义分割一个review

翻译自【http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review】大多数对于语义分割的研究,都是基于自然的或者真实世界的图像数据集。尽管这些结果并不能直接应用于医学图像,但是我仍然对这些文献进行了学习,因为这些研究远比...

2017-11-02 16:34:16

阅读数 1935

评论数 0

华盛顿大学机器学习基础:案例研究week2

利用Python学习简单的数据操作import graphlab sales = graphlab.SFrame('home_data.gl/') #exploring the data for housing sales graphlab.canvas.set_target('ipynb') s...

2017-10-21 21:03:48

阅读数 365

评论数 0

c++编程中遇到的问题

1.vs2013配置opencv3.2之后,编译通过,运行时缺少msvcp140d.dll文件: https://answers.microsoft.com/en-us/windows/forum/windows8_1-files/msvcp140ddll-is-missing-from-you...

2017-10-09 09:53:24

阅读数 362

评论数 0

vs里32位项目和64位项目的区别

由于操作系统内存分配的不同,导致软件开发过程中,需要编译不同版本的软件。 1。编译程序根据需要选择不同的编译环境。 x86和win32为32位程序,x64为64位程序,可以选择不同的编译条件形成不同位的软件。 2。

2017-10-08 21:39:05

阅读数 5233

评论数 0

华盛顿大学机器学习课程(个案研究法)

本课程主要是从应用入手,来解释一些机器学习中的模型。案例一:regression, linear regression(回归、线性回归)这个是一个经典的预测房价的案例。假设我们有一组房子的数据,包括房子面积,房间数目,卫生间个数,以及出售价格等属性,那么如何通过这些已知数据,来预测一个房子的出售价...

2017-09-18 21:51:25

阅读数 844

评论数 0

opencv编程函数

1.利用mask对原图进行处理cv::Mat testmask(376, 1241, CV_8UC1, cv::Scalar(0)); cv::Rect RoI(100, 100, 100, 100); testmask(RoI).setTo(255); //上面为生成一个mask,下面是如果利用...

2017-09-02 11:48:02

阅读数 110

评论数 0

吴恩达深度学习入门学习笔记之神经网络和深度学习(第二周:神经网络基础)

第二周:神经网络基础2.1二分分类训练数据集大小:m_train 测试数据集大小:m_test对于一个训练数据(x,y),x代表特征,x∈Rn,n表示数据维度,y代表label,y∈{0,1}。 对于一组训练数据,既包含特征信息,也包含标签信息。‘ 对于一个容量为m的训练数据集:(x(1),...

2017-09-01 20:47:46

阅读数 693

评论数 0

吴恩达深度学习入门学习笔记之神经网络和深度学习(第二周:神经网络基础)

第二周主要内容为:神经网络基础。2.1 二分分类 一些默认规则: 训练集的大小:m_train 测试集的大小:m_test 在定义特征矩阵的时候,对于输入数据(x,y),x代表特征,x \in R <>y代表label

2017-08-31 22:33:53

阅读数 229

评论数 0

吴恩达深度学习入门学习笔记之神经网络和深度学习(第一周)

第一周为深度学习概论,教授了一些基础概念。 2017.8.31 1.3 用神经网络进行监督学习 对于一般的数据,比如说房价问题,使用标准的神经网络。 对于图像领域中的一些数据处理,经常使用CNN(卷积神经网络) 对于序列数据,比如音频文件,和时间有关系,是一维时间序列,经常使用R...

2017-08-31 22:16:12

阅读数 956

评论数 0

Learning to remove soft shadows

本文假定,soft shadow(柔和阴影)是可以被分割的,因此是可以被编辑的。通过图像碎片学习出一个映射函数,能够产生阴影matte。本算法需要用户指定需要处理的阴影区域,通过训练好的有监督的回归算法,就能够自动生成无阴影的图像效果。本文提出的算法为数据驱动的,线下预训练好,然后就可以处理多变的...

2017-08-24 16:41:14

阅读数 306

评论数 0

Pixel-wise orthogonal decomposition for color illumination invariant and shadow-free image

原文:【Qu L, Tian J, Han Z, et al. Pixel-wise orthogonal decomposition for color illumination invariant and shadow-free image[J]. Optics express, 2015, ...

2017-08-23 21:10:25

阅读数 192

评论数 0

Shadow removal using bilateral filtering

原文: 【Yang Q, Tan K H, Ahuja N. Shadow removal using bilateral filtering[J]. IEEE Transactions on Image processing, 2012, 21(10): 4361-4368.】 本文中,使用...

2017-08-21 20:42:33

阅读数 272

评论数 0

Recursive drivable road detection with shadows based on two-camera systems

对这篇文章中关于图像阴影去除的部分做简单介绍。目前网上没找到相关代码,已向作者发出邮件要了,不知道会不会给我应答。该方法也是基于图像的成像原理: 这里边比我之前看到的貌似多了两个参数,g为场景的几何因素(geometric factor),l为光照亮度,实际上对应于之前公式里的I。把该公式中...

2017-08-17 15:56:36

阅读数 90

评论数 0

Single-image shadow detection and removal using paired regions学习解读

本文[1]实现了阴影的检测和去除。一、摘要 与其他基于像素和边缘的方法不同,该方法是基于区域的。1.对于分割出来的不同区域,预测其之间的相对光照条件,并进行按对分类;2.分类结果之后用于构建各部分之间的图,然后利用graph-cut来标记阴影区域和非阴影区域;3.通过image matting对...

2017-08-16 10:47:08

阅读数 675

评论数 0

Python学习日志(八)

1.汉诺塔问题,使用递归def hanoi(a,b,c,n): if n==1: print(a,'-->',c) else: hanoi(a,c,b,n-1) print(a,'-->',c) hanoi...

2017-08-11 19:31:35

阅读数 104

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭