01背包问题(学习笔记)

这篇博客探讨了动态规划在解决01背包问题及其变形的应用,以及矩阵链乘法的区间动态规划解决方案。通过01背包问题的贪吃策略优化,找到在限定重量下能获得最大价值的物品组合。同时,利用动态规划计算矩阵乘法的最小运算次数,降低了计算成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

根据维基百科背包问题(Knapsack problem)是一种组合优化的NP完全(NP-Complete,NPC)问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。

最基本的背包问题就是01背包问题(01 knapsack problem):一共有N件物品,第i(i从1开始)件物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?

这次测试中的贪吃的大嘴就是一个01背包的变形问题

dp思路:因为要求解蛋糕数量最小,所以dp思路围绕如何每一次dp使得蛋糕数最小,受0-1背包问题启发,设置滚动数组外层循环设置为每一个蛋糕,内循环为从大到小的美味度,并保证每个美味度下吃的蛋糕数量最小。


此外测试中的矩阵乘法是一个区间动态规划问题

思路先求一个矩阵相乘最小次数显然为0,再求矩阵链长度为2时最小花费,为p*q*r以此为基础求出各个矩阵链长最小花费Java实现如下

package jav;
import java.util.Scanner;
import java.lang.Math;
public class Main {
    public static void  main(String []args){
        Scanner in = new Scanner(System.in);
        long[] a;
        long[][] dp = new long[1100][1100];
        int n = in.nextInt();
        a = new long[n+1];
        int i, j, k, l;
        long t;
        for(i = 0; i<=n; i++){
            a[i] = in.nextInt();
        }
        for(i = 1; i<=n; i++){
            dp[i][i] = 0;
        }
        int m = 0;
        for(i = 2; i<=n; i++){
            for(j = 1; j<=n-i+1; j++){
                k = j+i-1;
                for(l = j; l<k; l++){
                    t = dp[j][l] +dp[l+1][k] + a[j-1]*a[l]*a[k];
                    if(dp[j][k] == 0){
                        dp[j][k] = t;
                    }
                    else {
                        dp[j][k] = Math.min(t, dp[j][k]);
                    }
                }
            }
        }
        int c = (int)dp[1][n];
        System.out.println(c);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值