根据维基百科背包问题(Knapsack problem)是一种组合优化的NP完全(NP-Complete,NPC)问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。
最基本的背包问题就是01背包问题(01 knapsack problem):一共有N件物品,第i(i从1开始)件物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?
这次测试中的贪吃的大嘴就是一个01背包的变形问题
dp思路:因为要求解蛋糕数量最小,所以dp思路围绕如何每一次dp使得蛋糕数最小,受0-1背包问题启发,设置滚动数组外层循环设置为每一个蛋糕,内循环为从大到小的美味度,并保证每个美味度下吃的蛋糕数量最小。
此外测试中的矩阵乘法是一个区间动态规划问题
思路先求一个矩阵相乘最小次数显然为0,再求矩阵链长度为2时最小花费,为p*q*r以此为基础求出各个矩阵链长最小花费Java实现如下
package jav;
import java.util.Scanner;
import java.lang.Math;
public class Main {
public static void main(String []args){
Scanner in = new Scanner(System.in);
long[] a;
long[][] dp = new long[1100][1100];
int n = in.nextInt();
a = new long[n+1];
int i, j, k, l;
long t;
for(i = 0; i<=n; i++){
a[i] = in.nextInt();
}
for(i = 1; i<=n; i++){
dp[i][i] = 0;
}
int m = 0;
for(i = 2; i<=n; i++){
for(j = 1; j<=n-i+1; j++){
k = j+i-1;
for(l = j; l<k; l++){
t = dp[j][l] +dp[l+1][k] + a[j-1]*a[l]*a[k];
if(dp[j][k] == 0){
dp[j][k] = t;
}
else {
dp[j][k] = Math.min(t, dp[j][k]);
}
}
}
}
int c = (int)dp[1][n];
System.out.println(c);
}
}