CRNN中英文字符识别

本文详细介绍了如何使用CRNN进行中英文字符识别,包括环境搭建(Ubuntu14.04, CUDA, OpenCV, PyTorch, LMDB, wrap_CTC等)、模型预测、训练过程及项目结构。提供了模型训练与预测的代码示例,并强调了模型分类数目与LSTM隐藏层数需保持一致。此外,还分享了数据预处理、数据来源以及增量训练的方法。" 113005930,10538021,CentOS7 升级OpenSSL和OpenSSH问题与解决方案,"['Linux', '操作系统', '系统管理', 'OpenSSL升级', 'OpenSSH升级']
摘要由CSDN通过智能技术生成

代码地址如下:
http://www.demodashi.com/demo/13870.html

参考GitHub源码:https://github.com/YoungMiao/crnn

应demo大师文章要求,我再补充下,推荐下,这个平台挺好

1.环境搭建

1.1 基础环境
  • Ubuntu14.04 + CUDA
  • opencv2.4 + pytorch + lmdb +wrap_ctc

安装lmdb apt-get install lmdb

1.2 安装pytorch

pip,linux,cuda8.0,python2.7:pip install http://download.pytorch.org/whl/cu80/torch-0.1.12.post2-cp27-none-linux_x86_64.whl
参考:http://pytorch.org/

1.3 安装wrap_ctc
git clone https://github.com/baidu-research/warp-ctc.git`
cd warp-ctc
mkdir build; cd build
cmake ..
make

GPU版在环境变量中添加
export CUDA_HOME="/usr/local/cuda"

cd pytorch_binding
python setup.py install

参考:https://github.com/SeanNaren/warp-ctc/tree/pytorch_b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值