OCR论文笔记系列(一): CRNN文字识别

👨‍💻作者简介:大数据专业硕士在读,CSDN人工智能领域博客专家,阿里云专家博主,专注大数据与人工智能知识分享,公众号:GoAI的学习小屋,免费分享书籍、简历、导图等资料,更有交流群分享AI和大数据,加群方式公众号回复“加群”或➡️点击链接

🎉专栏推荐:➡️点击访问《计算机视觉》:长期更新不限于深度学习、OCR、目标检测、图像分类、分割等方向总结资料。      ➡️点击访问《深入浅出OCR》:  对标全网最全OCR教程。以上目前活动仅29.9,感兴趣小伙伴可关注下。

🎉学习者福利:强烈推荐一个优秀AI学习网站,

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 15
    点赞
  • 122
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
CRNN(Convolutional Recurrent Neural Network)是一种用于文本识别的深度学习模型,其整体架构包括卷积层、循环神经网络层(RNN)和转录层。 具体来说,CRNN的架构可以分为以下几个部分: 1.卷积层(Convolutional Layer):用于提取输入图像中的特征,可以使用多个卷积层提取不同层次的特征。在CRNN中,通常使用卷积神经网络(CNN)进行特征提取。 2.循环神经网络层(Recurrent Neural Network Layer):用于捕捉序列信息。在CRNN中,通常使用双向LSTM(Bidirectional LSTM)作为循环神经网络层,这种网络结构可以有效地捕捉序列中的上下文信息。 3.转录层(Transcription Layer):用于将特征序列转换为文本输出。在CRNN中,通常使用CTC(Connectionist Temporal Classification)作为转录层,该层可以在没有对齐信息的情况下对输入序列进行分类。 整个CRNN的架构如下图所示: ``` +----------------+ +----------------+ | Input | | Output | +----------------+ +----------------+ | | | +---------------------+ v v +--------------+ +---------------+ | Convolution| | Bidirectional| | Layers | | LSTM | +--------------+ +---------------+ | | | | v v +-----------------+ +-----------------+ | Reshape and | | CTC Layer | | Permute Layer | +-----------------+ +-----------------+ | | v +---------------+ | Loss | +---------------+ ``` 其中,输入层将输入的图像送入卷积层进行特征提取,然后将特征序列送入双向LSTM进行序列建模,最后将建模结果送入CTC层进行分类,得到最终的文本输出。在训练过程中,模型通过损失函数计算输出序列与真实标签序列之间的差异,通过反向传播更新模型参数,从而不断优化模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GoAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值