NVIDIA_TX1之多python环境管理

多python环境管理,是为了安装多版本的pytorch或者tensorflow等。针对每个不同的开发需求,建立不同的隔离环境,避免系统的主环境受到影响。
在电脑上开发时,用的最多的是anaconda工具,只是jetpack对应的TX1、TX2这些都是arm开发板,没有直接的anaconda可以使用,所以总结了一下管理方法。

使用Archiconda

之前,我写的《TX1使用_jetpack4.6使用》一文中,介绍了这个工具,它相当于AArch64架构的conda,使用的命令和anaconda内的conda命令一样。

使用virtualenv

在官方的博文《Installing TensorFlow For Jetson Platform》中,以virtualenv工具介绍了多版本管理方法。

这个工具可以直接用pip安装

sudo apt-get install virtualenv
python3 -m virtualenv -p python3 <chosen_venv_name>

激活环境的命令

source <chosen_venv_name>/bin/activate

在选择的环境下安装tensorflow及其依赖

pip3 install -U numpy grpcio absl-py py-cpuinfo psutil portpicker six mock requests gast h5py astor termcolor protobuf keras-applications keras-preprocessing wrapt google-pasta setuptools testresources
pip3 install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v46 tensorflow==$TF_VERSION+nv$NV_VERSION

退出激活环境

deactivate

一般来说,运行使用这个tensorflow,流程是:激活环境-运行代码-退出激活环境

source <chosen_venv_name>/bin/activate
<Run the desired TensorFlow scripts>
deactivate

不过虚拟环境管理工具比conda功能少,如果你想要装上python X版本,就得先安装X版本的python,然后

virtualenv -p X版本python的路径\python.exe D:\virtualenv\python27

这样,你才能创建指定版本python的虚拟环境。
在vscode使用时,图形化界面的操作是
点击左下角
在这里插入图片描述

然后手动指定虚拟环境中的python路径
在这里插入图片描述
这样就可以使用了。

在激活环境后,在环境中启动输入code,来启动vscode。

相比conda是不是麻烦多了,毕竟virtualenv相比anaconda小,功能少也是正常的。如果在jetpack上,只是为了安装多个版本的tensorflow,其实也是足够使用的。在开发训练的机器上,还是conda更加方便。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值