反向传播算法(Backpropagation)是训练神经网络的核心算法之一。它用于计算神经网络中每个参数的梯度,并利用这些梯度来更新参数,从而最小化损失函数。反向传播算法基于链式法则,利用梯度下降法或其他优化算法来更新网络权重和偏置。
反向传播算法的主要步骤:
-
前向传播(Forward Propagation):
- 输入数据经过网络中的每一层,通过加权和激活函数计算每一层的输出,最终得到网络的预测值。
-
计算损失(Compute Loss):
- 使用损失函数计算网络预测值与实际目标值之间的误差。
-
反向传播(Backpropagation):
- 计算输出层的梯度:对损失函数关于输出层激活值的偏导数进行计算。
- 计算隐藏层的梯度:通过链式法则将输出层的梯度传递到隐藏层,计算隐藏层的梯度。
- 更新权重和偏置:利用梯度下降法或其他优化算法更新网络中每一层的权重和偏置。
反向传播算法详细步骤:
-
前向传播:
假设神经网络包含 ( L ) 层。对于第 ( l ) 层的神经元,前向传播计算如下:
z(l)=W(l)a(l−1)+b(l) z^{(l)} = W^{(l)} a^{(l-1)} + b^{(l)} z(l)=W(l)a(l−1)+b(l)
a(l)=σ(z(l)) a^{(l)} = \sigma(z^{(l)}) a(l)=σ(z(l))
其中,( W(l)W^{(l)}W(l) ) 和 ( b(l)b^{(l)}b(l) ) 分别是第 ( l ) 层的权重和偏置,( σ\sigmaσ ) 是激活函数,( a(l−1)a^{(l-1)}a(l−1) ) 是前一层的激活值。 -
计算损失:
使用损失函数(如均方误差或交叉熵)计算输出层的损失。 -
反向传播:
-
计算输出层的误差:
-