第20节:深度学习基础-反向传播算法详解

一、引言

反向传播算法(Backpropagation,简称BP算法)是深度学习领域最为核心的算法之一,它为神经网络提供了一种高效计算梯度的方法,使得基于梯度的优化成为可能。自20世纪80年代被重新发现并广泛应用以来,反向传播算法已经成为训练多层神经网络的标准方法,推动了深度学习革命的发展。

反向传播算法的本质是链式法则(Chain Rule)在神经网络中的巧妙应用,它通过从输出层向输入层反向传播误差信号,计算网络中每个参数相对于损失函数的梯度。这些梯度随后被用于优化算法(如随机梯度下降)来更新网络参数,从而最小化损失函数。

二、前向传播与计算图

2.1 神经网络的前向传播

在理解反向传播之前,首先需要了解前向传播(Forward Propagation)的过程。

前向传播是指输入数据通过神经网络的各层变换,最终得到输出的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值