一、1分钟了解
一句话解释,熵(shāng )就是描述一个孤立系统混乱程度的值。
通俗来讲可以这么理解:不确定性越大,熵就越大。
二、扩展
混乱程度和不确定性如何联系?
想象你去一片山坡放三只羊,为了方便解释,我们把山坡划分为9块。
一开始,你把三只羊全部拴在左下角,这个时候,羊全部老老实实呆在这一格,整个山坡+羊的系统是固定的,当你来找羊的时候,直接去左下角这一格,羊百分百在这。这就是初始熵很小的状态。
当然,放羊嘛,不能一直拴着不动,你打算好好放放羊,但是担心它们乱跑,就用一根绳子把它们三个连着,这个时候可能如下图,羊分散了,你只知道三只羊是相邻的,但是不知道他们会在哪一格,这个时候整个系统的状态稍微有点混乱了,而且羊有可能在任何一格中,但是至少你找到一只,就能在相邻的格子找到其余的羊。这个时候的熵处于中间值,羊的位置的可能性变多了,但是有一定的限制。
你觉得要释放羊的天性,干脆把绳子也解开了,这个时候羊会满山坡乱跑,如下图,这个时候任何一只羊都可能处于任何一格的位置。这个时候系统处于最混乱的状态,熵处于最大值,羊的位置的可能性也达到最大。
山坡就是一个孤立系统,羊的分布状态就是混乱程度。同时,也代表了其位置的不确定性。
把羊换成分子、文字、物种,把草地换成容器、信息、房间、宇宙,道理也是一样的。
不同学科中的熵
熵起源于热力学,后面也被引入到信息学、生态学等学科中,我们可以通过几个例子,你会发现它们背后的理解方式可以是一样的。
在热力学中,物理学上指热能除以温度所得的商,标志热量转化为功的程度。也用于度量一个热力学系统的无序程度。
一个典型的例子是气体的熵大于液体大于固定,也就是说水蒸气大于水大于冰,直观理解,我们想象一个独立的小房间,水蒸气可以自由在房间里飘动,无序程度最大,而水只能在地板上流动,无序程度一般,而结成冰了没法移动,无序程度最低,熵最小。
在信息学中,熵是接收的每条消息中包含的信息的平均量,可以理解为不确定性的量度,越随机的信源的熵越大。表示了信息的不确定程度,不确定性越大,信息熵也就越大。
例如,今天下雨了,我告诉你,今天下雨,信息熵就很低,因为已经是事实且你已经知道了,我告诉你没有任何影响,相当于我没传输给你任何有效信息,那么熵就约等于0。而如果我告诉你明天会下雨,这个概率是不一定的,对你是未知的,那我告诉了你这个信息,你知道了可能会带伞,就说明传输给你了信息,熵就比较大。
在生态学中熵是表示生物多样性的指标。其实直观理解也一样,假如有10只狗,你随便选一只,它都是狗,只有一种可能性是狗,那么熵就很低,而如果10只动物分别是猫、狗、老鼠等等不同的,你闭着眼睛摸一只,摸到每一只的可能性都是十分之一,相比前面情况更混乱、可能性更多,所以熵更大。
而在宇宙学中,熵只增不减,我们所处的宇宙一直在熵增状态。
想象一开始的草原,只有3乘3的9个格子,每只羊可能出现的格子有9种情况,现在草原(宇宙)膨胀到100乘100的大小,每只羊可能出现的格子情况是不是就更多了?其对应的熵也增加了。
熵的特性——熵增原理
熵增原理,指孤立热力学系统的熵不减少,总是增大或者不变。用来给出一个孤立系统的演化方向。在热力学中说:孤立系统自发地朝着热力学平衡方向──最大熵状态进行演化。
通俗来说,就是一个孤立系统总是会自发变得越来越混乱。
为什么?其实现在科学也没有一个很好的解释。但是我们可以通过羊群的例子这么理解,每只羊不可能一直待在一个地方吃草,总会自发地去其他的地方,整个位置状态就会越来越混乱。
三、趣闻
-
1923年,德国科学家普朗克到中国讲学用到entropy这个词,胡刚复教授翻译时灵机一动,把“商”字加火旁来意译“entropy”这个字,创造了“熵”字(音读:商),因为熵是Q(热量)除以T(温度)的商数。
-
贝尔实验室曾流传一则可信度不高的传闻:冯诺依曼建议香农为这个信息熵概念取名为“熵”,理由是这个热力学名词别人不懂,容易被唬住。
参考
-
wikipedia
-
百度百科
-
汉典