通俗解释什么是机器学习

一、快速了解

机器学习简单来说就是能够从大量数据中自己学习规律的一种计算机算法。

 

 

二、扩展知识

1. 机器学习要解决什么问题

机器学习的应用场景有很多,比如对话系统、语音识别、人脸识别、推荐系统、天气预测等等,它们的本质都是要解决一个问题:预测

对于对话系统来说,就是对于输入的语句,预测一句可能最符合逻辑和上下文的回复;

对于语音识别来说,就是对于输入一段音频,预测对应的自然语句;

对于人脸识别来说,就是输入一张人脸图片,预测对应的特征向量,然后和数据库中的人脸计算相似度,找出最相似的人;

对于推荐系统来说,就是给定一个用户(属性、特征、历史行为),预测用户可能最喜欢的东西;

对于天气预测来说,就是给定当天的各项气象指标,预测第二天的天气。

 

2. 预测问题的两种解决方案

a).专家通过数据找出规律,写出规则。

比如对话系统中,如果用户输入“你好”,机器人也应该回复“你好”。那么我们就可以在代码中实现,如果输入是“你好”,就返回“你好”。

比如传统的天气预测,就是气象学专家根据当天的天气、湿度、风向等各种因素,综合各种气象学知识来预测第二天的天气。

b).编写可以自动学习更新的算法,然后用大量数据训练,让算法自己学习预测的规则——这也就是机器学习了。

现实中很多问题都是没办法通过规则解决的,比如对话系统,有几乎无数种种输入语句(甚至是不同语法),是不可能写出所有规则的。

而对于天气预测来说,大家都知道天气预报是不可能百分百准确的,因为人人类的知识是有限的,可能有其他相关因素被忽略,或者前人总结的规则存存在漏洞。

而通过机器学习不断学习历史数据,可以挖掘到很多潜在的规律,还能不断提高预测准确率,因此目前的天气预报基本都引入了机器学习算法。

 

3. 机器学习的简单例子

举一个不是很恰当但是很好理解的例子——猜数字大小:

甲:我想了一个1到100的数字,你来猜,我会告诉你大了还是小了。

乙:90。

甲:大了。

乙:30。

甲:小了。

乙:60。

甲:大了。

乙:50。

甲:对了!

其中的 90——大了,就是一组训练数据,90是输入,大了是输出。通过输入一个数字和反馈大小,来不断调整输入,这就是迭代学习,通过代码实现就叫机器学习。

 

4. 机器学习的实际例子

以天气预测为例,注意这里为了方便理解,都做最简单的假设,实际中肯定更复杂,不过原理都是一样的。

假如第二天的天气为y(取值只能是晴天或者下雨),今天的温度为x1, 湿度为x2。

我们知道y是和x1、x2存在某种联系的,那么首先需要搜集很多历史成对的数据,然后假设(随机初始化)他们的关系是

1*x1+2*x2 = y

其结果y大于0.5则为晴天,小于0.5则会下雨。

接着我们把历史数据一条一条循环代入我们假设的关系公式中,比如第一条数据,x1=30, x2=0.85,第二天天气y=下雨,我们计算得到1*30+2*0.85=31.7,远大于0.5,预测是晴天,但是我们的数据标注是雨天,这时候就要调整我们的参数1和2,这里偏大了,我们就调小,比如假设关系调下为0.01*x1+0.02*x2。接着再代入下一条数据,是不是和猜数字大小很类似?

这样数据一条条的输入,算法也不断的迭代调整参数,这就是机器学习的过程,我们的数据不断循环喂给算法,直到大部分数据都预测正确,就完成了模型的训练。

最后用学习到的参数,代入今天温度、湿度值,就可以预测明天的天气了。

 

5. 机器学习与人工智能

机器学习及其分支深度学习是目前阶段人工智能的核心,各种现在市面上能看到的所谓的人工智能算法,99%都是基于机器学习。

通过原理可以看出,机器学习本身不具备思维能力和推理能力,只是可以从海量数据中自动学习到一定的规律而已。

 

所以并不用恐慌什么人工智能威胁论,至少电影中那种真正具有智能的机器人还离我们非常遥远。

 

 

 

 

<think>好的,用户让我用中文通俗解释什么是大模型。首先,我需要确定用户的理解水平,可能他们不是技术背景,所以要用简单的比喻和例子。大模型这个词在AI领域很常见,但外行可能不太清楚具体指什么。 我应该从常见的例子入手,比如ChatGPT,很多人可能听说过。然后解释大模型的基本概念,比如参数多、训练数据量大。需要避免使用专业术语,或者如果用了,要马上解释清楚。 接下来,可能需要分点说明大模型的特点,比如参数规模、训练数据、通用性、生成能力。每个点用简单的语言,比如把参数比作大脑神经元,数据量用图书馆来比喻,这样更直观。 还要考虑用户可能的疑问,比如大模型有什么用?所以需要举例应用场景,比如客服、写作辅助、翻译等。同时,也要提到局限性,比如可能出错、需要大量资源,这样回答会更全面。 用户可能还想知道为什么大模型现在这么火,所以可以提到技术进步,比如算力提升和算法优化,让大模型成为可能。但要注意不要深入技术细节,保持通俗。 最后,总结大模型的定义,强调它是通过大量数据训练出来的多功能AI,同时提醒实际应用中的注意事项。这样用户就能有一个全面的理解,又不觉得复杂。</think>大模型(Large Model)可以简单理解为一种“特别聪明的人工智能程序”。它的核心特点是:**规模极大、学习能力极强**,就像给计算机装了一个超级大脑,能处理各种复杂的任务。 ### 举个通俗的比喻: 如果把普通AI比作一个“专才”(比如只会下围棋的AlphaGo),那么大模型就是一个“通才”——它像是一个读过全世界所有书籍、看过无数视频、学过各种技能的“全能学霸”。你问它问题、让它写文章、画图、翻译甚至写代码,它都能像人类一样回应。 --- ### 大模型为什么“大”? 1. **参数规模极大** - 模型的“参数”相当于它的“脑细胞”。普通AI的参数可能是几百万个,而大模型(比如GPT-4)的参数可能高达**上万亿个**。参数越多,它能记住的规律和知识就越丰富。 2. **训练数据海量** - 大模型的学习材料不是几本书,而是整个互联网:维基百科、新闻、小说、论文、程序代码等等。比如训练GPT-3时,它“读过”的文本量相当于一个人连续读几万年才能读完的内容。 3. **通用性强** - 传统AI只能做特定任务(比如人脸识别),但大模型能同时处理聊天、写作、编程、推理等多种任务,像一个“全能助手”。 --- ### 大模型能做什么? - **回答问题**(比如ChatGPT) - **写文章、诗歌、代码** - **翻译语言** - **分析数据** - **生成图片、视频**(比如DALL-E、Sora) - **模拟对话**(比如客服机器人) --- ### 大模型的局限性 1. **不是真人,没有意识** 它只是通过概率预测下一个词,并不真正“理解”自己在说什么。 2. **可能出错或编造信息** 如果训练数据有错误,或者问题超出它的知识范围,它会“一本正经地胡说八道”(行业术语叫“幻觉”)。 3. **需要巨大算力** 训练一个大模型需要数千台高端计算机运行数月,耗电量堪比一个小城市。 --- ### 为什么现在才有大模型? - **技术进步**:计算机算力大幅提升(比如GPU的出现)。 - **数据爆炸**:互联网积累了海量文本、图像等数据。 - **算法突破**:2017年提出的Transformer架构(类似大脑的“高效学习法”)让模型能更聪明地处理信息。 --- 总结来说,大模型就是通过“用天文数字级别的数据和算力”训练出来的超级AI程序,它模糊了机器与人类能力的边界,但也需要谨慎使用(毕竟学霸偶尔也会抄错作业)。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值