什么是内卷?简单例子通俗解释

一、快速了解

内卷简单来说就是内部竞争,造成内卷的主要原因是资源有限、竞争变大,导致的结果是达到同样的目的,付出代价却变大了。

一开始大家都不补课,考清华需要650分,排名前十的人能上。

然后有一个人去补课了,其他人为了不落后,也跟着去补课了。

最后大家的排名还是没变,但是分数线提高到了700分了,而能上清华的还是只有排名前十的那些人。

这就是内卷,资源有限指的就是“招生名额”,竞争变大就是“有人主动去补课”,“能上清华的人还是那些,分数线却变高了,而且大家都额外花了时间和金钱补课”就是导致的结果

 

二、扩展知识

内卷在百科中的解释是指人类社会在一个发展阶段达到某种确定的形式后,停滞不前或无法转化为另一种高级模式的现象。

早期学者研究爪哇国农业的时候发现,农民在人口压力下不断增加水稻种植过程中的劳动投入,以获得较⾼的产量,但实际上当地农业生产长期停滞不前,因为只是简单地重复再⽣产,并不能提⾼单位人均产值。于是引出内卷化的概念。

现在最严重的内卷现象之一就是公司的加班文化。一开始大家都不用加班,从员工层面来说,其他员工加班了,为了不落后,只有被迫跟着加班;而从公司层面来说,其他公司加班了,也只有被迫跟着加班。

而公司、公职岗位招聘也算是内卷很严重了,以前可能本科毕业就能找到一个很好的工作,现在开始动不动要博士、要海外留学经历...

 

三、如何应对内卷

应对内卷从宏观层面来说,最理想的方式是获取更多的资源、更多的坑位,但是目前的人口来说,短期内缓解内卷现象是不现实的。

对于个体来说,最直接避免内卷的方式就是换个赛道,这个世界机会那么多,总会有不那么内卷的,这也是现在流行的“斜杠青年”的由来。

毕竟在互联网时代,再小的个体也有自己的品牌,每个人都有着无穷的可能性。

<think>好的,我现在需要帮助用户理解卷积神经网络(CNN)的基本概念和原理,并且要提供一个通俗易懂的解释。首先,用户可能对CNN不太熟悉,所以需要从基础开始,逐步深入,同时避免使用过于专业的术语。 首先,我应该回顾用户提供的引用内容,确保回答中包含这些信息。引用1提到卷积计算层是CNN的核心,需要重点阐述。引用2解释了神经网络的结构,包括输入层、隐藏层和输出层,以及预处理步骤。引用3则描述了卷积层如何从低维特征过渡到高维特征,用拼图来比喻。这些都需要整合到回答中。 接下来,我需要确定回答的结构。用户需要的是通俗解释,所以可能需要用类比和简单例子。例如,将CNN比作多层的筛网或者拼图,帮助用户形象化理解。然后分点介绍CNN的核心概念,如卷积层、激活函数、池化层、全连接层等,每个部分用简短的说明和例子。 还要注意用户提到的系统级指令,比如数学公式用$...$格式,独立公式用$$...$$,但用户的问题可能不涉及太多数学,不过如果有必要,可以简单提及卷积运算的公式,如$S(i,j) = (X * K)(i,j) = \sum_m \sum_n X(i+m, j+n) K(m, n)$,但需要保持简洁。 然后,生成相关问题,这些问题应该围绕用户可能感兴趣的后续内容,比如CNN的应用、层数影响、与传统神经网络的对比等。 需要检查是否符合中文回答,避免语法错误,确保LaTeX格式正确。同时,引用标注要自然地放在相关段落的末尾,如引用[^1]、[^2]、[^3]。 可能还需要考虑用户的学习背景,如果是初学者,避免深入复杂的数学推导,而是强调结构和流程。例如,预处理步骤如归一化、去均值,这些在引用2中提到,可以简要说明。 最后,确保回答结构清晰,分点明确,使用示例或比喻帮助理解,并在最后生成相关问题,引导用户进一步探索。</think>### 卷积神经网络(CNN)通俗解释 卷积神经网络(CNN)是一种专门处理**网格状数据**(如图像、音频)的深度学习模型。它的核心思想是通过**局部感受野**和**权值共享**,模仿人类视觉系统对图像的分层特征提取过程。以下是核心原理的通俗解释: --- #### 1. **基础结构类比:多层筛网** CNN的卷积层就像一组递进的筛网: - **第一层筛网**:捕捉基础特征(如边缘、线条、颜色过渡),类似人眼看到图像的轮廓[^3] - **中间层筛网**:组合基础特征形成更复杂的结构(如圆形、方形、纹理) - **最后层筛网**:识别完整物体(如眼睛、车轮、文字) 例如识别猫的图片: $$低级特征 \rightarrow 中级特征 \rightarrow 高级特征$$ $$边缘→耳朵形状→完整猫头$$ --- #### 2. **核心组件拆解** | 组件 | 作用 | 类比 | |---------------|-----------------------------|----------------------| | 卷积层 | 用卷积核扫描图像提取局部特征 | 放大镜逐区域观察图案 | | 激活函数(ReLU)| 增加非线性表达能力 | 决定哪些特征值得保留 | | 池化层 | 压缩特征图尺寸,保留关键信息 | 缩小照片尺寸但保留主体 | | 全连接层 | 综合所有特征进行分类 | 最终判断图像类别 | ![CNN层级结构示意图](https://example.com/cnn-layers.png) (注:示意图展示特征从简单到复杂的变化) --- #### 3. **关键特性** - **局部连接**:每个神经元只关注图像的一小块区域(如3×3像素),而非全图,减少计算量 - **权值共享**:同一卷积核在全图滑动使用相同参数,例如边缘检测器无论用在左上角还是右下角都用同一组权重 - **平移不变性**:无论物体出现在图像哪个位置都能识别 例如用$3×3$卷积核计算特征: $$S(i,j) = (X * K)(i,j) = \sum_{m=0}^2 \sum_{n=0}^2 X(i+m, j+n) \cdot K(m,n)$$ --- #### 4. **完整处理流程示例** ```python 输入图片 → 卷积(提取边缘) → ReLU(激活) → 池化(降维) → 卷积(检测形状) → ReLU → 池化 → 全连接层(分类) ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值