1078 Hashing (25 point(s)) 笔记

原题连接

Quadratic probing 平方探查法

中文名为平方探查法。用于解决hash的collision。有算法笔记书的打开讲hash那一节的,曾经提到过。(忘了的活该卡一下午呜呜呜)
现在想想还是好气,以为那个词不重要(主要是看不懂)愣是卡了2小时……
当我们发现key的位置已经被占,可以通过一系列计算再确定其可以insert的下标
它的计算公式为 (key+a^2)%size, (key-a^2)%size (a=1,2,3,4……)(0< a <size)
当经过一个size的循环后,我们仍未找到可以插入的位置,则说明没有位置可插。
下面给出我的accept代码

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int Max = 20010;
bool HashMapPrimeNumber[Max];
bool HashMap[Max];
void PrimeNumber() {
	fill(HashMapPrimeNumber , HashMapPrimeNumber + Max, true);
	HashMapPrimeNumber[0] = false;
	HashMapPrimeNumber[1] = false;
	for (int i = 2; i < Max; i++) {
		if(HashMapPrimeNumber[i])
			for (int j = i * 2; j < Max; j += i) {
				HashMapPrimeNumber[j] = false;
		}
	}
	for (int i = 0; i < Max; i++) {
		if (HashMapPrimeNumber[i])
			cout << i << " ";
	}
}
int main() {
	PrimeNumber();
	int Size, Number;
	cin >> Size >> Number;
	while (HashMapPrimeNumber[Size] == false)
		Size++;
	for (int i = 0; i < Number; i++) {
		int j;
		int temp = 0;
		cin >> temp;
		for (j = 0; j < Size; j++) {
			int key = temp + j * j;
			key %= Size; 
			if (HashMap[key] == false) {
				HashMap[key] = true;
				cout << key << (i < Number - 1 ? " " : "\n");
				break;
			}
		}
		if (j == Size)
			cout << "-"<< (i < Number - 1 ? " " : "\n");
	}
	return 0;
}

主要思路

  1. 打出素数表。记得不要写错循环条件,会导致无法accept……(可能又只有我一个人踩坑?顺带一提,假如写错,大概率会出现3 4点无法通过,卡3 4点的朋友记得检查素数表或者素数函数)
  2. 寻找一个刚好比user给出大的最小素数。
  3. 利用平方探查法,确定hash有效坐标。从0开始循环可以稍稍简化代码,从1开始也是一样的。
  4. key记得取模。

心得

  1. 多积累专业词汇。看到一些奇怪的,高效的算法,可以记一记名字,再试图理解算法。一是可以缓解不认识词的尴尬场面,二是可以积累优秀算法的写法。
  2. 有时候可以多怀疑一下自己认为必对的代码块,说不定就是因为你打错了个参数导致过不了呢?
  3. 平方探查法是一个可以解决hash collision的算法。还有一个叫拉链法。关于hash的算法还有很多,更高效的需要借助stl来实现。

Roman wasn’t built in a day.Just do it!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值