- 博客(4)
- 收藏
- 关注
原创 机器人学学习(1)
如果把1-3、2-3分别理解成不同的坐标系,就知道前面说的旋转矩阵是相对于自身坐标系变换得到的结果,若现在连续旋转N次,则旋转围绕的轴是在不断更新的。1.坐标模型:一个固定不变的坐标系1:XYZ,一个运动的坐标系2:UVW,运动坐标系中有相对固定的点P,假设P在2中坐标已知,为P1=(u,v,w),在1中坐标未知,设为P2,有P2=QP1,其中矩阵Q为从1坐标系形成的基到2坐标系形成基的过渡矩阵:[2]=[1]Q^T,基都是写成行向量形式。值得强调的是,上面的旋转2、3顺序也是不能调换该有的顺序的。
2023-12-04 11:07:23 87
原创 矩阵理论第三章 矩阵的范数和幂级数
1.向量范数:本质是一种特别的函数,用来反应向量的“大小”,这个大小可以是找出向量项中某位最大的,用成绩来理解向量范数,也可以是突出向量班级所有人的总分数,或者第一名分数等等。向量的p范数:向量每项取模再取p次方,之后求和再开p次方根号。由p范数可以引申出,1范数,2范数,无穷大范数。2.矩阵范数。把矩阵理解成班级里好几排同学的成绩(向量是一排同学),那么矩阵范数就很好理解了,既可以强调哪一排分数最高,也可以强调所有整体分数如何。F范数:所有项取模。
2023-11-07 20:07:41 676
原创 矩阵理论第二章(待完善)
特别的:哪些矩阵可以一眼看出能相似对角化(就像实对称矩阵一定能相似对角化):一个是正规矩阵(满足A^H*A=A*A^H可交换,就是复数域里酉矩阵定义去掉=E的部分),正规矩阵里有个加强条件A^H=A(叫Hermite矩阵),还能得到酉变换成实数对角阵,且不同特征值的特征向量还相互正交(实对称矩阵里也有这个结论,现在放大到复数矩阵了)矩阵等价的条件就是能初等变换成一样的smith矩阵(桥梁,smith矩阵是一个对角矩阵形式矩阵))(而特征矩阵是也是。此外还有些性质要记住:矩阵特征值一定是最小多项式的根。
2023-10-18 17:59:20 129 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人