机器人学学习(1)

数学基础:

1.坐标模型:一个固定不变的坐标系1:XYZ,一个运动的坐标系2:UVW,运动坐标系中有相对固定的点P,假设P在2中坐标已知,为P1=(u,v,w),在1中坐标未知,设为P2,有P2=QP1,其中矩阵Q为从1坐标系形成的基到2坐标系形成基的过渡矩阵:[2]=[1]Q^T,基都是写成行向量形式。

2.一个坐标系旋转变成另一个坐标系(结果论而言,本质是基的变化):可以推导得到,假设1围绕自己z轴旋转(旋转方向满足右手准则)得到2,可以推出结论:[2]=[1]Q^T,其中Q是一个含有旋转角度参数的正交阵。

如何推理关于围绕其他轴旋转得到不同的旋转变换矩阵:画个图,然后歪着看成原来的关于z轴转的情况,只不过相当于把字母符号变了。

3.旋转矩阵的性质:只关于一个轴旋转得到的变换矩阵是一个正交阵,又正交阵相乘还是正交阵,因此不管是否关于三个轴都发生旋转,并不会改变其总的矩阵还是正交阵。

*****但是要注意:虽然旋转矩阵相乘没有改变正交性,但是不能交换前后变换的次序。

体会这种用向量、矩阵的知识建模并用矩阵语言解释的思维。

*****以上的旋转运动,都是相对于自身坐标系运动得到结论(下面会说为什么要强调这点)

旋转运动:

首先理解一个事实:空间中有三个点1、2、3,点3围绕1或者2旋转相同角度得到的结果是不一样的。如果把1-3、2-3分别理解成不同的坐标系,就知道前面说的旋转矩阵是相对于自身坐标系变换得到的结果,若现在连续旋转N次,则旋转围绕的轴是在不断更新的。这样其实也方便我们理解每次转了多少度,实际每次转的角度就是机械臂每处电机转动的角度。

先旋转再平移的齐次矩阵T

引入这个的目的是为了让变换矩阵能描述坐标系的平移变换,最后实际上齐次矩阵在真正操作中不需要去考虑是否这次平移之前有旋转,把每一次运动都分解成已包含一次变换运动的齐次矩阵。有公式:\widetilde{p}=T\widetilde{p{}'},(基准坐标系中的坐标=Tx运动坐标系中坐标)

齐次矩阵的左乘与右乘

本质还是对上面的公式的理解,使用的出发点一定是:基于自身坐标系在变化。

现在有两个问题,能思考明白区别就明白了:

1)一个坐标系中有一点P,现在先相对于固定的坐标系平移1,再旋转2,最后旋转3,那么最后该点的坐标应该为:T3(T2(T1xP))

2)一个坐标系中有一点P,现在坐标系不断做变换,先平移1,再旋转2,最后旋转3,那么最后该点的坐标应该为:T1(T2(T3xP))

值得强调的是,上面的旋转2、3顺序也是不能调换该有的顺序的。

关于围绕任意轴旋转的推导:

上面是关于坐标系中的xyz轴(以下简称为标准旋转变换),关于任意轴旋转需要一个过程:

        假想目标轴跟坐标系固定在一起,现在先把这个轴通过两次标准的旋转(一定要是相对于固定坐标系,即做左乘变换)让轴与固定坐标系的某个轴重合,接着让坐标系围绕重合的固定坐标系轴旋转目的角度\theta,此时等效于坐标系围绕目的轴旋转,之后再将目标轴如法炮制变换到初始的位置,这样从结果来讲五个操作等效完成了围绕空间任意轴旋转\theta的操作。结果应该是T5T4T3T2T1P,其中T3是关于\theta的参数,T2T1是让任意轴与固定坐标系重合,T5T4是还原任意轴的初始位置。

        *****从结果来讲,五次变换左后结果是一个T而且只有T中的旋转参数在变换,其他元素没有变换,而且因为变换的方法不唯一,所以T不唯一。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值