矩阵第二章:线性变换用矩阵语言描述(第一章内容)、线性变换本质就是基下矩阵(矩阵有特征向量和特征值,因此线性变换也有特征向量和特征值的概念)(ps:这是对工程上问题的线代语言表达)(特征向量注意扩展到一个在特定基下的量,不再是线代里一个简单向量,并对特征向量形成的空间定义一个新的名字叫特征子空间)、矩阵特征值的代数重数和几何重数定理(说明不是所有矩阵都可以对角化)
然后就对角化这个问题进行了探讨,什么样的矩阵可以相似对角化,(对角化的意义在便于分析工程问题和简化计算,由实际用途),提出了复数域矩阵对角化的充要条件(对于每个特征根要满足代数重数等于几何重数);
特别的:哪些矩阵可以一眼看出能相似对角化(就像实对称矩阵一定能相似对角化):一个是正规矩阵(满足A^H*A=A*A^H可交换,就是复数域里酉矩阵定义去掉=E的部分),正规矩阵里有个加强条件A^H=A(叫Hermite矩阵),还能得到酉变换成实数对角阵,且不同特征值的特征向量还相互正交(实对称矩阵里也有这个结论,现在放大到复数矩阵了)
做个表格对比复数矩阵和实数矩阵的一些结论:
实数矩阵 | 复数矩阵(推广) |
实数矩阵相似对角阵的条件 | 复数矩阵相似对角阵的条件(相同) |
正交矩阵的定义 | 酉矩阵的定义(把T换成H) |
正规矩阵的性质 | |
实对称矩阵的性质 | 复对称矩阵(hermite矩阵)的性质 |
同样对于不能满足对角化的矩阵,也提出了标准化的方向(jordan矩阵);
首先介绍了schur定理:存在酉矩阵让任意矩阵相似于一个上三角(但是这个定理不够用,因为上三角还是不够精简)
有个定理:对于任何一个矩阵A一定能找到可逆矩阵Q使得A与jurdan矩阵J相似。(后面会给出说明)
为了找到J,说明矩阵相似的另一个充要条件:特征矩阵等价(理解A与J相似的关键)(还有一个定理,矩阵等价的条件就是能初等变换成一样的smith矩阵(桥梁,smith矩阵是一个对角矩阵形式矩阵))(而特征矩阵是也是矩阵的一种特例)。
储备知识:矩阵就是含参数的矩阵,这种含参矩阵也定义了三种初等变换(也是可逆变换),在初等变换下可以变成smith标准型(说白了就是含参数的对角矩阵),所以两个矩阵如果能通过初等变换变成一样的smith标准型,也就是说明最终这两个矩阵其实能用若干个可逆矩阵相互变换得到(和线代里一样,定义了矩阵等价的概念)。同样为了更易于判定两个矩阵等价,我们只需要将他们变成smith标准型比较对角参数即可(这个对角上的参数叫做不变因子,不变因子还可以用行列式因子定义(不细究原理)、不变因子还能定义初始因子,初始因子主要便于写jordan块)
特征矩阵从表达式看可以知道它也是一种矩阵(因此叫矩阵A的特征矩阵),从smith标准型来看,特征矩阵与不变因子直接关联,而不变因子的乘积就是特征多项式,而特征多项式一样意味着两个矩阵相似,因此有结论:矩阵AB相似充要条件:特征矩阵等价(不变因子一样)
求某个矩阵的不变因子意思就是求其特征矩阵的不变因子;
为什么说A与J相似只要特征矩阵等价或者不变因子一样?
因为不变因子会等价于特征多项式。因此求任意一个矩阵的相似矩阵J,要先求出不变因子,再推出初始因子,初始因子与J块有一个相互确定的结论,就能得到J。不过相似变换矩阵Q要自己设值再求。
J与对角阵的关系:当矩阵块的阶数为1时,就是对角阵,可见对角阵是J的特殊情况。
此外:第二章也介绍了减小运算量的C-H定理和最小多项式
C-H定理比较容易理解:就是任何一个方阵带入到特征多项式中一定会为0;工程中为了得到更精简的化简条件,产生了最小多项式(全程最小次数零化多项式)。
最小多项式就是矩阵的最大的不变因子;此外还有些性质要记住:矩阵特征值一定是最小多项式的根。
因为最小多项式和不变因子相关,因此不变因子的一些结论也能推广到最小多项式;
如果AB相似,则不变因子一样,则dn一样,则最小多项式一样;
dn没有重根等价所有不变因子都没有重根,等价于初始因子都是一次,等价于A可以相似对角化,因此如果最小多项式没有重根,等价于矩阵A可以相似对角化(主要用于判定一个抽象矩阵能否相似对角化)
hermite二次型:对线代二次型的推广,假如矩阵A是hermite矩阵,由于hermite的特殊性质,知道二次型一定能进行坐标变换x=By,将二次型化成一个实对角矩阵,因此hermit二次型的正定判定主要是对于它的特征值判断:1),所有特征值大于0;2)A满足A=B^T*E*B、B可逆(即A先对角化再单位化)。