动态规划-背包问题

问题描述:the Knapsack Problem

给定n个物品,重量是{w1,...,wn},价值是{v1,...,vn},包的容量(承重)是W

问,放入哪些物品能使得包内价值最大;


思路:运用动态规划思想

1 需要将问题转化为子问题,通过递归实现,且子问题必然与父问题存在关联

2 定义V[i,j] 表示为,当item取自前i个items且背包capacity=j 时,背包问题的最优解,也即最高的价值

3 从前i个items中,选择任意一个组合的情况,可分成两个子集,一种即包含第i个item的集合,一种即不包含第i个item的集合;我们的最优解,即可从这两个子集的最优解中比较而得出;

4  无第i个item的最优解,同时capacity=j,自然是V[i-1,j],根据定义可知并不包含第i个item;

5  包含第i个item的最优解,同时capacity=j ,就是在前 i-1 个items的情况下且capacity=j-wi 的最优解(价值)第i个item(价值),用字母表示为 vi+V[i-1,j-wi]

6  为了使算法更全面,考虑一种情况,j-wi<0 ,下标会越界,

7 考虑初始状况,V[0,j]=0 for j>=0 ,V[i,0]=0 for i>=0







阅读更多
个人分类: 算法
想对作者说点什么? 我来说一句

0-1背包问题 动态规划源码

2008年08月20日 250KB 下载

没有更多推荐了,返回首页

不良信息举报

动态规划-背包问题

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭