求最大公约数和最小公倍数

一、最小公倍数

1、分解质因数法。

   我们也可以利用分解质因数的方法,比较简便地求出两个数的最小公倍数。

   例如:求60和42的最小公倍数。

60=2×2×3×5   42=2×3×7

60和42的最小公倍数=2×3×2×5×7=420 。

这种方法是把60和42分别质因数后,观察相同的质因数只取一个(如2,3),把各自独有的质因数全部乘进去,所得的积就是这两个数的最小公倍数。

首先把两个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)。 就是如果出现重复的质因数,取最多的那组,不重复的质因数都要乘上去
比如:
求5和17的最小公倍数。 

5=1*5 
17=1*17
不同的质因数是17,5。1是他们两者都有的质因数,最小公倍数等于1*5*17=85 
又如计算36和12的最小公倍数 
36=2*2*3*3 
12=2*2*3 
不同的质因数没有。3这个质因数在36中比较多,为两个,所以乘两次;最小公倍数等于2*2*3*3=36
以此类推
12=2*2*3
18=2*3*3
108=2*2*3*3*3
最小公倍数等于2*2*3*3*3=108
 

2、列举法

   例如:求6和8的最小公倍数。

   6的倍数有:6,12,18,24,30,36,42,48,……

   8的倍数有:8,16,24,32,40,48,……

   6和8的公倍数:24,48,……其中24是6和8的最小公倍数。

   这种方法是先分别写出各自的倍数,再找出它们的公倍数,然后在公倍数里找出它们的最小公倍数。

3、短除法。

  用短除法求18和24的最小公倍数。

2      18      24    …………先同时除以公因数2

    3   9     12    …………再同时除以公因数3

        3       4   ……除到两个商只有公因数1为止。

把所有的除数和最后的两个商连乘,得到:18和24的最小公倍数是2×3×3×4=72,可表示为[18,24]=2×3×3×4=72。

用短除法求两个数的最小公倍数,一般都用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止。把所有的除数和最后的两个商连乘起来,就得到这两个数的最小公倍数。

4、肉眼判断法。

(1)如果a.b是互质数,那么a.b的最小公倍数是a×b。

如:求4和5的最小公倍数。

4和5是互质数,那么4和5的最小公倍数是4×5=20 。

(2)如果两个数中,较大的数是较小数的倍数,那么较大的数是这两个数的最小公倍数。

如:求16和8的最小公倍数。

16是8的倍数,那么16就是16和8的最小公倍数。


二、最大公约数

(1)用短除法求两个数的最大公约数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来,在除的过程中,有时也可以用两个数的公约数去除。

用短除法求18和24的最大公约数。

2      18      24    …………先同时除以公因数2

    3   9     12    …………再同时除以公因数3

        3       4   ……除到两个商只有公因数1为止。

把所有的除数连乘,得到:18和24的最小公倍数是2×3=6 (2)求两个数的最大公约数的两种特殊情况:
①如果这两个数存在着倍数关系(即较大数是较小数的倍数),那么,较小数就是这两个数的最大公约数;
如果两个数是互质数,那么它们的最大公约数就是1。
求两个数的最大公约数的方法

两个数的最大公约数是整数,其值应不大于两个数中的小的那个数,应不小于1。

公约数即能除尽给定的那两个数的整数,余数为0。

最大公约数是公约数中最大的那个数。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值