一、最小公倍数
1、分解质因数法。
我们也可以利用分解质因数的方法,比较简便地求出两个数的最小公倍数。
例如:求60和42的最小公倍数。
60=2×2×3×5 42=2×3×7
60和42的最小公倍数=2×3×2×5×7=420 。
这种方法是把60和42分别质因数后,观察相同的质因数只取一个(如2,3),把各自独有的质因数全部乘进去,所得的积就是这两个数的最小公倍数。
首先把两个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)。 就是如果出现重复的质因数,取最多的那组,不重复的质因数都要乘上去
比如:
求5和17的最小公倍数。
5=1*5 17=1*17 不同的质因数是17,5。1是他们两者都有的质因数,最小公倍数等于1*5*17=85
又如计算36和12的最小公倍数 36=2*2*3*3 12=2*2*3 不同的质因数没有。3这个质因数在36中比较多,为两个,所以乘两次;最小公倍数等于2*2*3*3=36 以此类推 12=2*2*3 18=2*3*3 108=2*2*3*3*3 最小公倍数等于2*2*3*3*3=108
2、列举法
例如:求6和8的最小公倍数。
6的倍数有:6,12,18,24,30,36,42,48,……
8的倍数有:8,16,24,32,40,48,……
6和8的公倍数:24,48,……其中24是6和8的最小公倍数。
这种方法是先分别写出各自的倍数,再找出它们的公倍数,然后在公倍数里找出它们的最小公倍数。
3、短除法。
用短除法求18和24的最小公倍数。
2 18 24 …………先同时除以公因数2
3 9 12 …………再同时除以公因数3
3 4 ……除到两个商只有公因数1为止。
把所有的除数和最后的两个商连乘,得到:18和24的最小公倍数是2×3×3×4=72,可表示为[18,24]=2×3×3×4=72。
用短除法求两个数的最小公倍数,一般都用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止。把所有的除数和最后的两个商连乘起来,就得到这两个数的最小公倍数。
4、肉眼判断法。
(1)如果a.b是互质数,那么a.b的最小公倍数是a×b。
如:求4和5的最小公倍数。
4和5是互质数,那么4和5的最小公倍数是4×5=20 。
(2)如果两个数中,较大的数是较小数的倍数,那么较大的数是这两个数的最小公倍数。
如:求16和8的最小公倍数。
16是8的倍数,那么16就是16和8的最小公倍数。
二、最大公约数
(1)用短除法求两个数的最大公约数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来,在除的过程中,有时也可以用两个数的公约数去除。
用短除法求18和24的最大公约数。
2 18 24 …………先同时除以公因数2
3 9 12 …………再同时除以公因数3
3 4 ……除到两个商只有公因数1为止。
把所有的除数连乘,得到:18和24的最小公倍数是2×3=6 (2)求两个数的最大公约数的两种特殊情况:
①如果这两个数存在着倍数关系(即较大数是较小数的倍数),那么,较小数就是这两个数的最大公约数;
②如果两个数是互质数,那么它们的最大公约数就是1。