高等天线理论学习笔记——电磁源的辐射场

在三维空间简单媒质中电磁源 ( J , J m ) (\mathbf{J},\mathbf{J_m}) J,Jm产生的电磁场问题

在这里插入图片描述

简单媒质: 线性、均匀、各向同性,参数为 ( μ , ϵ ) (\mu,\epsilon) μ,ϵ

形状任意的电流源、磁流源就是天线, o o o点就是作为数学分析的坐标原点,现在在 r r r观察点接收,我们需要观察点处的电场分布情况——天线远场方向图。方向图其实就是天线在远场产生的电场分布表达式中,仅与方向 θ , ϕ \theta,\phi θ,ϕ 有关的分量。

仅电流源 ( J ≠ 0 , J m = 0 ) (\mathbf{J}\neq 0,\mathbf{J_m}=0) J=0,Jm=0存在时的麦克斯韦方程组

∇ × H = J + j ω ϵ E ∇ × E = − j ω μ H ∇ ⋅ H = 0 ∇ ⋅ E = ρ / ϵ \nabla\times\mathbf{H}=\mathbf{J}+j\omega\epsilon\mathbf{E}\\ \nabla\times\mathbf{E}=-j\omega\mu\mathbf{H}\\ \nabla\cdot\mathbf{H}=0\\ \nabla\cdot\mathbf{E}=\rho/\epsilon ×H=J+ϵE×E=μHH=0E=ρ/ϵ

仅磁流源 ( J = 0 , J m ≠ 0 ) (\mathbf{J}=0,\mathbf{J_m}\neq 0) J=0,Jm=0存在时的麦克斯韦方程组

根据电磁对偶原理,进行如下替换 E → H \mathbf{E}\to \mathbf{H} EH H → − E \mathbf{H}\to -\mathbf{E} HE ρ → ρ m \rho\to\rho_m ρρm ϵ ↔ μ \epsilon\leftrightarrow\mu ϵμ J ↔ J m \mathbf{J}\leftrightarrow\mathbf{J_m} JJm得到
∇ × E = − J m − j ω ϵ H ∇ × H = j ω ϵ E ∇ ⋅ E = 0 ∇ ⋅ H = ρ m / ϵ \nabla\times\mathbf{E}=-\mathbf{J_m}-j\omega\epsilon\mathbf{H}\\ \nabla\times\mathbf{H}=j\omega\epsilon\mathbf{E}\\ \nabla\cdot\mathbf{E}=0\\ \nabla\cdot\mathbf{H}=\rho_m/\epsilon ×E=JmϵH×H=ϵEE=0H=ρm/ϵ
理想电导体(金属天线)、磁导体(口径场)的表面电磁流分布:
n ^ × H = J s n ^ × E = − J m s \hat{n}\times\mathbf{H}=\mathbf{J_{s}}\\ \hat{n}\times\mathbf{E}=-\mathbf{J_{ms}} n^×H=Jsn^×E=Jms

电磁流源 ( J ≠ 0 , J m ≠ 0 ) (\mathbf{J}\neq 0,\mathbf{J_m}\neq 0) J=0,Jm=0都存在情况下的完全解

引入电、磁矢位便于求解总场
H = ∇ × A E = − ∇ × F \mathbf{H}=\nabla\times \mathbf{A}\\ \mathbf{E}=-\nabla\times \mathbf{F} H=×AE=×F
得到位函数的波动方程
( ∇ 2 + k 2 ) A = − J ( ∇ 2 + k 2 ) F = − J m \begin{array}{l} (\nabla^2+k^2) \mathbf{A}=-\mathbf{J}\\ (\nabla^2+k^2) \mathbf{F}=-\mathbf{J}_m \end{array} (2+k2)A=J(2+k2)F=Jm
在洛伦兹规范下仅用位函数就可表达电场
E ( r ) = − j ω μ ( A + 1 k 2 ∇ ∇ ⋅ A ) − ∇ × F \mathbf{E}(\mathbf{r})=-j\omega\mu(\mathbf{A}+\frac{1}{k^2}\nabla\nabla\cdot\mathbf{A})-\nabla\times\mathbf{F} E(r)=μ(A+k21∇∇A)×F

其中
A = ∫ V G ( r / r ′ ) J ( r ′ ) d v ′ G ( r / r ′ ) = e − j k ∣ r − r ′ ∣ 4 π ∣ r − r ′ ∣ \mathbf{A}=\int_VG(\mathbf{r}/\mathbf{r'})\mathbf{J}(\mathbf{r'})dv'\\ G(\mathbf{r}/\mathbf{r'})=\frac{e^{-jk\mid\mathbf{r}-\mathbf{r'} \mid}}{4\pi\mid\mathbf{r}-\mathbf{r'} \mid } A=VG(r/r)J(r)dvG(r/r)=4πrrejkrr
远场情况下,忽略 o ( r − 1 ) o(r^{-1}) o(r1)项,可有以下近似

  1. ∇ → − j k r ^ \nabla\rightarrow-jk\hat{\mathbf{r}} jkr^
  2. ∣ r − r ′ ∣ ≈ r \mid\mathbf{r}-\mathbf{r'} \mid\approx r rr∣≈r 幅度近似
  3. ∣ r − r ′ ∣ ≈ r − r ^ ⋅ r ′ \mid\mathbf{r}-\mathbf{r'} \mid\approx r-\hat{\mathbf{r}}\cdot\mathbf{r'} rr∣≈rr^r 相位近似

最终得到远场的电磁场表达式为
E ( r ) = Z A ( k ) e − j k r r H ( r ) = Y k ^ × A ( k ) e − j k r r \mathbf{E}(\mathbf{r})=\sqrt{Z}\mathbf{A}(\mathbf{k})\frac{e^{-jkr}}{r}\\ \mathbf{H}(\mathbf{r})=\sqrt{Y}\hat{\mathbf{k}}\times\mathbf{A}(\mathbf{k})\frac{e^{-jkr}}{r} E(r)=Z A(k)rejkrH(r)=Y k^×A(k)rejkr
其中 Z = μ / ϵ Z=\sqrt{\mu/\epsilon} Z=μ/ϵ 为媒质波阻抗,幅度矢量 A ( k ) \mathbf{A}(\mathbf{k}) A(k)
A ( k ) = k 4 π j ∫ V [ Z ( I ~ − r ^ r ^ ) ⋅ J ( r ′ ) + Y J m ( r ′ ) × r ^ ] e j k ⋅ r ′ d v ′ \mathbf{A}(\mathbf{k})=\frac{k}{4\pi j}\int_V[\sqrt{Z}(\tilde{\mathbf{I}}-\hat{\mathbf{r}}\hat{\mathbf{r}})\cdot\mathbf{J}(\mathbf{r}')+\sqrt{Y}\mathbf{J}_m(\mathbf{r}')\times\hat{\mathbf{r}}]e^{j\mathbf{k}\cdot\mathbf{r}'}dv' A(k)=4πjkV[Z (I~r^r^)J(r)+Y Jm(r)×r^]ejkrdv
分布于有限区域的场源产生的远区电磁场为TEM波,电场、磁场和传播方向三者互相垂直,整体为球面波,局部为平面波。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值