PageRank

PageRank是Google的网页排名技术,基于马尔可夫链的数学模型,通过链接关系来确定网页的重要性和等级。一个页面的PageRank值由链入页面的PageRank和数量决定,同时考虑阻尼系数,防止旧页面始终高于新页面。虽然Google已从网站管理员工具中移除了PageRank显示,但它仍影响着搜索结果的排序。
摘要由CSDN通过智能技术生成

PageRank生成的Web网页排序是静态的,这是指每个网页的排序值是通过离线计算得到的,并且该值与查询无关。也就是说,网页排序值的计算纯粹基于Web上现有链接,而不考虑任何用户的任何查询。

知识背景:

马尔可夫链,因俄罗斯数学家安德烈·马尔可夫俄语Андрей Андреевич Марков)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,只有当前的状态用来预测将来,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。

在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做过渡,与不同的状态改变相关的概率叫做过渡概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。

如果我们想用马尔科夫链进行建模,那么A应是一个随机矩阵且是不可约和非周期的。这样我们就可以使用马尔科夫链的一些理论成果。

随机矩阵:它要求每个元素都是非负实数,且每行加起来和为1。(如果在模拟过程中出现一个网页没有出链,这种情况在转移矩阵A中表现为有些行全是由0组成的,这样的网页叫做悬挂网页。解决方法:从每一个悬挂网页i向每个网页引一条链接。)

不可约:如果Web图G不是强连通的,则A不是不可约的。

周期图:说状态i是周期的并且具有周期k>1,是指存在一个最小的正整数k,使得所有从状态i出发又回到状态i的路径的长度都是k的整数倍。如果一个状态不是周期的(或者k=1),那它就是非周期的。如果一个马尔科夫链的所有状态都是非周期的,那么就说这个马尔科夫链是非周期的。


以下转自维基百科:

PageRank网页排名,又称网页级别Google左侧排名佩奇排名,是一种由搜索引擎根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇Larry Page)之姓来命名。Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一。Google的创始人

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值