- 博客(103)
- 资源 (1)
- 收藏
- 关注
原创 线性链条件随机场(Linear Chain Conditional Random Field)-有监督学习方法、概率模型、生成模型、对数线性模型、参数化模型
线性链条件随机场(Linear Chain Conditional Random Field)-有监督学习方法、概率模型、生成模型、对数线性模型、参数化模型
2024-09-18 23:27:27 1171
原创 马尔科夫蒙特卡洛_吉布斯抽样算法(Markov Chain Monte Carlo(MCMC)_Gibbs Sampling)
马尔科夫蒙特卡洛_吉布斯抽样算法(Markov Chain Monte Carlo(MCMC)_Gibbs Sampling)
2024-09-18 18:36:09 1025
原创 马尔科夫蒙特卡洛_梅特罗波利斯-黑斯廷斯算法(Markov Chain Monte Carlo(MCMC)_Metropolis Hastings algorithm)
马尔科夫蒙特卡洛_梅特罗波利斯-黑斯廷斯算法(Markov Chain Monte Carlo(MCMC)_Metropolis Hastings algorithm)
2024-09-18 18:09:32 728
原创 潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)—无监督学习方法、概率模型、生成模型、线性模型、非参数化模型、贝叶斯学习、批量学习
潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)—无监督学习方法、概率模型、生成模型、线性模型、非参数化模型、贝叶斯学习、批量学习
2024-09-13 13:53:44 972
原创 概率潜在语义分析(Probabilistic Latent Semantic Analysis,PLSA)—无监督学习方法、概率模型、生成模型、共现模型、非线性模型、参数化模型、批量学习
概率潜在语义分析(Probabilistic Latent Semantic Analysis,PLSA)—无监督学习方法、概率模型、生成模型、共现模型、非线性模型、参数化模型、批量学习
2024-09-12 19:20:28 848
原创 潜在语义分析(Latent Semantic Analysis,LSA)—无监督学习方法、非概率模型、判别模型、线性模型、非参数化模型、批量学习
潜在语义分析(Latent Semantic Analysis,LSA)—无监督学习方法、非概率模型、判别模型、线性模型、非参数化模型、批量学习
2024-09-12 18:25:39 696
原创 主成分分析(Principal Component Analysis,PCA)—无监督学习方法
主成分分析(Principal Component Analysis,PCA)—无监督学习方法
2024-09-12 18:17:27 782
原创 K均值聚类(K Means Cluster)—无监督学习方法、非概率模型、判别模型、线性模型、非参数化模型、批量学习
K均值聚类(K Means Cluster)—无监督学习方法、非概率模型、判别模型、线性模型、非参数化模型、批量学习
2024-09-12 15:56:53 1115
原创 层次聚类(Hierarchical Cluster)—无监督学习方法、非概率模型、判别模型、线性模型、非参数化模型、批量学习
层次聚类(Hierarchical Cluster)—无监督学习方法、非概率模型、判别模型、线性模型、非参数化模型、批量学习
2024-09-12 15:48:06 544
原创 隐马尔可夫模型(Hidden Markov Model,HMM)—有监督学习方法、概率模型、生成模型
隐马尔可夫模型(Hidden Markov Model,HMM)—有监督学习方法、概率模型、生成模型
2024-09-11 17:46:38 1237
原创 期望极大算法(Expectation Maximization Algorithm,EM)
期望极大算法(Expectation Maximization Algorithm,EM)
2024-09-11 17:30:41 1138
原创 AdaBoost算法(AdbBoost Algorithm)—有监督学习方法、非概率模型、判别模型、非线性模型、非参数化模型、批量学习
AdaBoost算法(AdbBoost Algorithm)—有监督学习方法、非概率模型、判别模型、非线性模型、非参数化模型、批量学习
2024-09-11 17:19:24 908
原创 支持向量机(Support Vector Machines,SVM)—有监督学习方法、非概率模型、判别模型、线性模型、非参数化模型、批量学习、核方法
支持向量机(Support Vector Machines,SVM)—有监督学习方法、非概率模型、判别模型、线性模型、非参数化模型、批量学习、核方法
2024-09-10 19:41:30 1214
原创 最大熵模型(Maximum Entropy Model)—有监督学习方法、概率模型、生成模型、线性模型、参数化模型、批量学习
最大熵模型(Maximum Entropy Model)—有监督学习方法、概率模型、生成模型、线性模型、参数化模型、批量学习
2024-09-10 19:21:56 877
原创 二项逻辑斯谛回归(Binomial Logistic Regression Model)—有监督学习方法、概率/非概率模型、生成/判别模型、线性模型、参数化模型、批量学习
二项逻辑斯谛回归(Binomial Logistic Regression Model)—有监督学习方法、概率/非概率模型、生成/判别模型、线性模型、参数化模型、批量学习
2024-09-10 19:04:06 851
原创 大数据技术体系架构
在大数据时代下,人们的生产生活源源不断的产生新的数据,这些数据的采集、存储、管理、分析、显示会逐渐形成一套严谨且科学的体系结构。
2024-09-09 21:30:15 1035
原创 决策树(Decison Tree)—有监督学习方法、概率模型、生成模型、非线性模型、非参数化模型、批量学习
朴素贝叶斯法(Naive Bayes)—有监督学习方法、概率模型、生成模型、非线性模型、参数化模型、批量学习、贝叶斯学习
2024-09-09 19:29:36 1355
原创 朴素贝叶斯法(Naive Bayes)—有监督学习方法、概率模型、生成模型、非线性模型、参数化模型、批量学习、贝叶斯学习
朴素贝叶斯法(Naive Bayes)—有监督学习方法、概率模型、生成模型、非线性模型、参数化模型、批量学习、贝叶斯学习
2024-09-09 19:14:48 1008
原创 K近邻法(K-nearest neighbor,K-NN)—有监督学习方法、非概率模型、判别模型、线性模型、非参数化模型、批量学习、核方法
K近邻法(K-nearest neighbor,K-NN)—有监督学习方法、非概率模型、判别模型、线性模型、参数化模型、批量学习、核方法
2024-09-07 15:37:57 1029
原创 感知机(Perceptron)—有监督学习方法、非概率模型、判别模型、线性模型、参数化模型、批量学习、核方法
(感知机-Perceptron)—有监督学习方法、非概率模型、判别模型、线性模型、参数化模型、批量学习、核方法
2024-09-06 17:10:09 905
原创 网络故障处理及分析工具:Wireshark和Tcpdump集成
Wireshark 是一款免费的开源数据包嗅探器和网络协议分析器,已成为网络故障排除、分析和安全(双向)中不可或缺的工具。本文深入探讨了充分利用 Wireshark 的功能、用途和实用技巧。无论您是开发人员、安全专家,还是只是对网络操作感到好奇,本博客都将增强您对 Wireshark 及其应用程序的了解。
2024-07-14 14:15:01 1179
原创 9个最适合使用的Java分析器
Java分析器工具可以明显的提高问题定位、分析、处理的效率,下面会给大家简单的介绍几款日常工作过程中使用到的Java分析器。
2024-07-14 13:40:26 988
原创 如何选择正确的 JDK 版本?
保持 JDK 最新不仅重要,而且是明智之举。通过保持最新,您可以从最新的安全性和性能增强中受益。这意味着即使您的代码保持不变,您的用户的安全性和他们对应用程序的体验也会随着时间的推移而改善。因此,我们强烈建议所有 Java 用户继续使用积极支持的版本,并立即应用关键补丁更新安全补丁。保持最新有两种途径:您可以应用同一 Java 版本的更新(更新),也可以采用较新的 Java 版本(升级)。这篇博文将提供给您一些关于思考何时更新和何时升级的建议。在深入探讨之前,有必要澄清我们将在本文中使用的一些术语。
2024-07-14 12:41:57 1547
原创 使用 ChronicleMap 扩展高性能内存缓存
我们用于与各种程序化和需求方平台 (DSP) 集成的应用程序之一是低延迟、高吞吐量的基于 JVM 的应用程序。这是 付款凭单(DV)付前前验证解决方案的核心组件。自多年前成功推出此解决方案以来,我们不断添加多项关键功能,同时保持严格的延迟 SLA 并每天处理数千亿个请求。
2024-07-07 14:33:15 785
原创 GraalVM简介及使用
在本文中,我们将回顾 GraalVM 是什么、它是如何工作的,以及即时 (JIT) 编译和提前 (AOT) 编译之间的区别?GraalVM 是一种高性能运行时,为用 Java 和其他语言编写的应用程序提供了显着的优势。它由 Oracle 开发,通过利用高级优化和独特的架构,可以更快、更高效地运行应用程序。
2024-07-07 13:42:25 966
原创 在Spring Boot项目中使用Leyden
Spring Boot 服务的 RAM 消耗减少多达 30% ,为研究Spring Boot而量身定制的 Alpaquita 容器。Buidpacks也可用!重要提示:Project Leyden EA 版本基于实验代码,不适用于生产用途。此外,EA 版本中的某些功能可能会更改或删除,工作流程也可能会更改。
2024-07-06 21:12:59 734
原创 JVM常用概念之安全点
那么 JVM 如何让所有线程进入安全点状态?问题在于将线程暂停在已知状态,而不仅仅是中断它。为了实现此目标,如果观察到“安全点标志”,JVM 会让 Java 线程在方便的位置自行暂停。
2024-06-25 11:17:19 1254
原创 JDK 23:Loom改进版发布
Project Loom 发布了新的抢先体验版本(23-loom+4-102 - 2024/5/31)。改进了对象监视器实现,可以防止虚拟线程在预知的3种情况下固定其载体线程
2024-06-25 10:37:21 484
原创 JDK 24:Leyden
Project Leyden 发布了其首个早期版本(24-leyden+2-8 2024/6/20)。初始版本专注于缩短 Java 应用程序的启动时间。
2024-06-25 10:29:16 340
原创 通过自定义分配器解决 ZGC中的碎片问题
ZGC 和其他垃圾收集器通常使用碰撞指针分配,这对于顺序分配很有效,但随着时间的推移会导致碎片化。当产生无法轻松重用的内存间隙时,就会发生碎片化,这需要昂贵的活动对象重新定位。这项研究的目标是通过使用基于空闲列表的分配器和碰撞指针分配器来减少 ZGC 中的重新定位需求,这可以在某些情况下更有效地跟踪和利用碎片内存。
2024-06-20 09:37:34 376
原创 JDK 23:更改默认注释处理策略
注释处理是一项编译时功能,其中 javac 扫描要编译的源文件中的注释,然后扫描类路径以查找匹配的注释处理器,以便它们可以生成源代码。在 JDK 22 之前,此功能默认启用,当它在 2006 年左右的 JDK 6 中引入时,这可能是合理的,但从当前的角度来看,为了使构建输出更可靠,以防止注释处理器被无意中放置在类路径上,这不太合理。因此,从 JDK 23 开始,javac 需要一个额外的命令行选项来启用注释处理。
2024-06-20 09:25:39 259
原创 JVM常用概念之扁平化堆容器
扁平化堆容器是OpenJDK Valhalla 项目提出的,其主要目标为将值对象扁平化到其堆容器中,同时支持这些容器的所有指定行为,从而达到不影响原有功能的情况下,显著减少内存空间的占用(理想条件下可以减少24倍)。
2024-06-13 10:37:29 914 2
原创 JVM常用概念之线程本地分配缓冲区(ThreadLocal Allocation Buffer,TLAB)
当实例化一个Java类时,运行时环境必须为相关实例分配存储空间,在JRE中此存储空间分配操作是有内存管理器实现的(其实是JVM的垃圾回收器),由于内存管理器通常使用与运行时目标语言不同的语言编写(例如,Java 以 JVM 为目标,而 HotSpot JVM 是用 C++ 编写的),因此接口会变得更加模糊。而这种操作成本是相当高的,并且内存管理器也必须应对多线程场景下进行内存请求多压力。为了使Java程序的运行效率尽可能接近C++等语言的运行效率,针对JVM的内存管理器的执行效率需要进行优化。
2024-06-10 08:54:34 918
原创 将操作与数据分离 - 面向数据编程 v1.1
面向数据编程 (DOP) 非常注重数据,此次讨论的原则涉及实现大多数域逻辑的方法,它建议将操作与数据分开。
2024-06-06 10:39:38 1229
原创 JDK23将弃用 sun.misc.Unsafe中的内存访问方法并将其删除
类sun.misc.Unsafe于 2002 年推出,是 JDK 中 Java 类执行底层操作的一种方式。其大多数方法(87 种方法中的 79 种)用于访问内存,在JDK23中将通过VarHandle API(JEP 193,JDK 9)和 Foreign Function & Memory API(JEP 454,JDK 22)来彻底替换原来通过sun.misc.Unsafe实现的内存访问方法。
2024-06-05 10:30:58 1116
Arduino完全实战-epub版
2019-06-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人