参考文档
基本思想
- HQL优化,本质是对MR/RDD的优化,可以通过
explain hql来查看执行计划
常见思路
- 表优化
- 分区(分区多,文件多)
- 静态分区
- 动态分区
set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrict;
- 分桶
- 规则:对分桶字段值进行哈希,哈希值除以桶的个数求余,余数决定了该条记录在哪个桶中,也就是余数相同的在一个桶中
- 好处
- 方便抽样
- 提高
join的效率:若join的两张表有相同的列,且该列均进行了分桶,则join时将相同值的桶进行join操作即可,大大减少join的数据量
set hive.enforce.bucketing=true; set hive.enforce.sorting=true; # 开启强制排序,插数据到表中会进行强制排序,默认false
- 分区(分区多,文件多)
- query优化
- IO
- 只查询需要的列
- 尽可能用分区表,避免全表扫描
- 数据倾斜
- join
set hive.optimize.skewjoin=true; # 如果是join过程中出现倾斜 应该设置为true set hive.skewjoin.key=100000; # 这个是join的键对应的记录条数,超过这个值则会进行优化 - group by
set hive.group.skewindata=true; # 如果是group by过程出现倾斜,应该设置为true set hive.groupby.mapaggr.checkinterval=100000; # 这个是group的键对应的记录条数超过这个值则会进行优化 - count distinct:执行的
MR是以GroupBy分组,再对distinct列排序,然后输出交给Reduce,所以,在reduce之前,本地的map已经完成预计算,并且提前做了一次聚合运算,如果此时的distinct造成了数据不平衡,则reduce时就会出现计算的数据量有大有小,即数据倾斜- 解决方法:考虑用
group by的子查询来替换count(distinct)# 替换前 select count(distinct id) from tablename; select a, sum(b), count(distinct c), count(distinct d) from test group by a; # 替换后 select count(1) from (select id from tablename group by id) tmp; select a, sum(b) as b, count(c) as c, count(d) as d from( select a,0 as b, c, null as d from test group by a,c union all select a,0 as b, null as c, d from test group by a, d union all select a,b,null as c, null as d from test )tmp1 group by a; ```
- 解决方法:考虑用
- 常见值(
null, 0, 1, -1, -99等默认值):如果常见值的占比比较大时,较容易出现数据倾斜
- join
- 表关联
- 大表放后:
MR从后往前构建数据 - 同列关联:如可能,用同一列关联 同列关联,无论关联多少表都是一个
Map搞定,如果不是同列,就会新开一个MR - mapjoin
- 关联操作中有一张小表
- 不等值的连接操作
set hive.auto.convert.join=true; # hive.mapjoin.smalltable.filesize默认值是25mb,小表小于25mb自动启动mapjoin - bucket join
- 两个表以相同方式划分桶
- 两个表的桶个数是倍数关系
# 优化前 select m.cid, u.id from order m join customer u on m.cid = u.id where m.dt='2018-06-08' # 优化后: where条件放在map端,而不是reduce端 select m.cid, u.id from (select cid from order where dt = '2018-06-08') m join customer u on m.cid = u.id;
- 大表放后:
- Hive job优化
- 并行化执行:关联性不大的阶段,可以并行化执行
set hive.exec.parallel=true; set hive.exec.parallel.thread.number=8; - 本地化执行
set hive.exec.mode.local.auto=true;join满足如下条件才可用本地模式- job的输入数据大小必须小于参数:
hive.exec.mode.local.auto.inputbytes.max(默认128MB) - job的
map数必须小于参数:hive.exec.mode.local.auto.tasks.max(默认4) - job的
reduce数必须为0或1
- job的输入数据大小必须小于参数:
- 小文件合并:合并文件数由
mapred.max.split.size限制的大小决定- 合并输入
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat - 合并输出
set hive.merge.smallfiles.avgsize=256000000; # 当输出文件平均大小小于该值,启动新job合并文件 set hive.merge.size.per.task=64000000; # 合并之后的文件大小
- 合并输入
- 并行化执行:关联性不大的阶段,可以并行化执行
- JVM重利用:Job长时间保留slot,直到作业结束。若有较多任务和较多小文件的任务时,该参数很有意义:减少执行时间。但此值不宜过大,有些作业会有
reduce任务,一旦没有完成,则map占用slot不会释放,其它作业需要等待set mapred.job.reuse.jvm.num.tasks=20; - 压缩数据
- 中间压缩:处理hive查询的多个job之间的数据,进行压缩
set hive.exec.compress.intermediate=true; set hive.intermediate.compression.codec=org.apache.hadoop.io.compress.SnappyCodec; set hive.intermediate.compression.type=BLOCK; - 输出压缩
set hive.exec.compress.output=true; set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec; set mapred.output.compression.type=BLOCK;
- 中间压缩:处理hive查询的多个job之间的数据,进行压缩
- Hive Map优化
- map参数
- 原则
- 如果想增加
map个数,则设置mapred.map.tasks为一个较大的值 - 如果想减少
map个数,则设置mapred.min.split.size为一个较大的值 - 输入文件
size巨大,但不是小文件:增大mapred.min.split.size的值 - 输入文件数量巨大,且都是小文件,就是单个文件的
size小于blockSize:增大mapred.min.split.size不可行,需要使用CombineFileInputFormat将多个input path合并成一个InputSplit送给mapper处理,从而减少mapper的数量
- 如果想增加
- 参数
# 默认map个数 default_num = total_size / block_size; # 期望大小 goal_num = mapred.map.tasks; # 设置处理的文件大小 split_size=max(mapred.min.split.size, block_size) split_num = total_size / split_size; # 计算map个数 compute_map_num = min(split_num, max(default_num, goal_num)) ```
- 原则
- map端聚合
set hive.map.aggr=true; - 推测执行
mapred.map.tasks.speculative.execution # 默认为true
- map参数
- shuffle优化
- map端参数
# 默认100M。map节点运行没完成时,若内存数据过多,该设置就是内存缓冲的大小,在shuffle之前该项定了map输出结果在内存占用buffer的大小,当buffer达到阈值,则启动后台线程对buffer内存sort,然后spill到硬盘 io.sort.mb # 上面参数buffer的阈值,默认0.8(80%) io.sort.spill.percent # 默认值3。当spill数量不低于该值时,则combiner函数会在merge产生结果文件之间运行 min.num.spill.for.combine # 默认10。当一个map task执行完成后,本地磁盘上有若干spill文件,map task最后一件事就是执行merge sort,执行时每次同时打开多个spill文件,同时打开的文件数量由该值决定。说明:打开的文件越多,不一定merge sort就越快,也要根据数据情况适当的调整 io.sort.factor # 默认值0.05。io.sort.mb中用来保存map output记录边界的百分比,其他缓存用来保存数据 io.sort.record.percent - reduce端参数
# 默认5,reduce copy数据的线程数 mapred.reduce.parallel.copies # 默认 300(s)。reduce下载线程最大等待时间 mapred.reduce.copy.backoff # 默认0.7(70%)。Reduce用来存放从Map节点取过来的数据所用的内存占堆内存的比例 mapred.job.shuffle.input.buffer.percent # 默认值0。sort完成后reduce计算阶段用来缓存数据的百分比 mapred.job.reduce.input.buffer.percent
- map端参数
- reduce优化
- reduce操作
- 聚合函数:sum, count, distinct …
- 高级查询:group by; join; distribute by; cluster by; order by…
- 推测执行:默认为
truemapred.reduce.tasks.speculative.execution # hadoop hive.mapred.reduce.tasks.speculative.execution # hive,二者效果一样,二选一即可 - reduce优化
set mapred.reduce.tasks=10; # 直接设置 hive.exec.reducers.max # 默认999 hive.exec.reducers.bytes.per.reducer # 默认1G - 计算公式
numTasks = min(maxReducers, input.size / perReducer) maxReducers = hive.exec.reducers.max perReducer=hive.exec.reducers.bytes.per.reducer
- reduce操作
- 相关参数
- hive
# Hive 自动转换联接无条件(mapjoin)大小,默认20M hive.auto.convert.join.noconditionaltask.size # 小文件平均大小合并阈值。默认16M hive.merge.smallfiles.avgsize # Spark 执行程序最大 Java 堆栈大小。默认256M spark.executor.memory # Spark 驱动程序最大 Java 堆栈大小。默认256M spark.driver.memory # Spark 驱动程序内存开销。默认26M spark.yarn.driver.memoryOverhead # Spark 驱动程序内存开销。默认26M spark.yarn.executor.memoryOverhead - yarn
# 每个作业的 Reduce 任务的默认数量,默认1 mapreduce.job.reduces # 容器内存。默认8G yarn.nodemanager.resource.memory-mb # 最大容器内存。默认64G yarn.scheduler.maximum-allocation-mb # 最大容器虚拟 CPU 内核数量。默认32 yarn.scheduler.maximum-allocation-vcores
- hive
- IO
Explain执行计划
- 不走
MR- SQL
explain select date, week, week_num, quarter, rank, pay_amt, pct_rank from home_page_pay_rank where year='2020' - explain
1 STAGE DEPENDENCIES: 2 Stage-0 is a root stage 3 4 STAGE PLANS: 5 Stage: Stage-0 6 Fetch Operator 7 limit: -1 8 Processor Tree: 9 TableScan 10 alias: home_page_pay_rank 11 filterExpr: (year = '2020') (type: boolean) 12 Select Operator 13 expressions: date (type: string), week (type: string), week_num (type: string), quarter (type: string), rank (type: int), pay_amt (type: string), pct_rank (type: string) 14 outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6 15 ListSink 16
- SQL
1503

被折叠的 条评论
为什么被折叠?



