前言:
{
最近在重新看傅立叶变换,感觉这简直是打开新世界的大门。都怪我之前没学好,现在看起来比较费劲,花了不少时间,所以这次还是零散知识。
这次的主要内容都是围绕径向基神经网络展开的。
}
正文:
{
根据[1]中的介绍,径向基函数(Radial basis function,RBF)是一类函数。设输入样本为x,一个中心点为c,则任何只依赖x和c之间距离的函数都是径向基函数(叫径向是因为当c固定时,径向基函数的输出是关于x径向对称的)。
径向基函数的典型形式为高斯基函数(Gaussian basis functions),见式1。

其中ci对应上述c,i为隐含层节点的编号,隐含层的具体定义在下面。
图1是[1]中给出的一种径向基神经网络(Radial basis function network)的结构。