【问题探究】如何解决pytorch训练时的显存占用递增(导致out of memory)

本文探讨了在使用PyTorch训练神经网络时遇到的显存占用不断增长的问题,导致训练过程中出现out of memory错误。通过尝试在每次迭代后删除变量并结合torch.cuda.empty_cache(),成功解决了内存泄漏问题。尽管存在自动内存管理方法,但手动回收在某些情况下更有效。文章引用了多个在线资源,为读者提供了理解和解决问题的途径。
摘要由CSDN通过智能技术生成

前言:

{

    现在的神经网络模型,动不动就爆内存。两年前我笔记本2G的显存都绰绰有余,现在16G的P100,24G的P40却还不够。更让我郁闷的是,在pytorch训练时,显存占用竟然会不断增加,可能刚开始训练时是正常的,但是放在那里,不知道什么时候它就突然来一句out of memory,然后就尥蹶子不干了,白白浪费了很长的时间。所以这个问题我确实需要搞清楚。

}

 

正文:

{

    首先,我要说一个比较野蛮的办法,就是单独写一个训练脚本,其开始时先载入模型,结束时再保存模型。然后把数据集分割成更小的子数据集(小到模型不会因为显存而尥蹶子不干)。当然,训练脚本的输出参数应当包含数据集(编号)和/或子数据集(编号)。

 

    我去谷歌上搜了一下,最先看到的是[1],上面建议用del删除一些变量,我尝试过用del在每次迭代后删除所有能删除的变量(输入,输出,损失),但是不起效果,模型还是会在同样的迭代次数后报错。

 

    后来我又找到了[2],上面说之后再加上torch.cuda.empty_cache(),这次成功了。

    也就是说,del操作后再加上torch.cuda.empty_cache()才会起效果!代码1是一个例子。

#代码1。
"""添加了最后两行,i
评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>