深度学习
baidu-liuming
机器学习 深度学习 大数据 自然语言处理 linux python shell hive 算法
展开
-
flatten层的作用
flatten是用来对数组进行展平操作的,首先我们假设有一张灰度图片,这个图片只有3x3个像素点,分别是从1到9,我们对其进行flatten操作。首先它会把每1行进行分开,然后用第2行接在第1行后面,形成一个新的数组1,2,3,4,5,6,最后再把第3行的7,8,9接在新生成的数组后面形成最终的数组。接下来我们来验证一下我们的猜想。首先导入numpy包,用它来创建一个3x3的二维数组a,并将a打印出来。灰色图片是一维的,对其flatten:我们可以看到,经过flatten操作之后,本来3行的数转载 2021-03-15 13:03:38 · 13201 阅读 · 0 评论 -
深入理解transformer源码
推荐博客:深入理解transformer源码原创 2021-03-15 12:48:48 · 157 阅读 · 0 评论 -
RNN & LSTM
最近重温RNN,将比较好的博客和做的实例记录下:RNN & LSTM原理:RNN实例:原创 2021-03-15 12:44:22 · 89 阅读 · 0 评论 -
CNN卷积神经网络
最近重温CNN,对原理细节重新推敲了一遍,网上有很多博客讲解的不错,在此做个总结。博客CNN原理,推荐七月的这一篇:CNN笔记:通俗理解卷积神经网络全连接层的作用:CNN 入门讲解:什么是全连接层(Fully Connected Layer)?这个知乎专栏写的很不错:卷积神经网络(CNN)入门讲解按照官方教程实现的实例:卷积神经网络(CNN)实例使用keras实现卷积神经网络定义CNN结构class CNN(tf.keras.Model): def __init__(self):原创 2021-03-15 12:26:41 · 412 阅读 · 1 评论 -
人工神经网络
1.神经网络的优势      神经网络相比传统机器学习算法有较大的优势,机器学习最要的过程是特征工程,传统机器学习是一整套的迭代和训练算法,通过定义loss function,然后最小化损失函数,从而得到一个原创 2018-04-14 14:11:49 · 654 阅读 · 0 评论