tensorflow
baidu-liuming
机器学习 深度学习 大数据 自然语言处理 linux python shell hive 算法
展开
-
TensorFlow的reduce_sum()函数
官方解释:import tensorflow as tf# 交叉熵评估代价cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))上面是TensorFlow官方文档中的函数解释。其实在reduce_sum()中,是从维度上去考虑的(感觉这个Matlab中数据的概念比较像)调用 reduce_sum(arg1, arg2) 时,参数arg1即为要求和的数据,arg2有两个取值分转载 2021-03-15 12:40:25 · 214 阅读 · 0 评论 -
Jupyter notebook选择conda环境
服务器上配置有多个conda的Python环境,在使用jupyter notebook时需要使用其中的一个环境,但是其默认还是使用系统python环境,因此需要解决这个问题.解决方案其实很简答,参考这个帖子.首先,安装nb_conda_kernels包:conda install nb_conda_kernels然后在新建notebook时选择相应的环境:另外还可以对已经存在的notebook更换环境:问题解决!...转载 2021-01-25 16:00:50 · 460 阅读 · 0 评论 -
tf.argmax()解析
tf.argmax(input,axis)根据axis取值的不同返回每行或者每列最大值的索引。 这个很好理解,只是tf.argmax()的参数让人有些迷惑,比如,tf.argmax(array, 1)和tf.argmax(array, 0)有啥区别呢? 这里面就涉及到一个概念:axis。上面例子中的1和0就是axis。我先笼统的解释这个问题,设置axis的主要原因是方便我们进行多个维度的计算。比如:test = np.array([[1, 2, 3], [2, 3, 4], [5, 4, 3],转载 2020-12-07 20:20:45 · 180 阅读 · 0 评论 -
tensorflow中 tf.reduce_mean函数
tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的平均值,主要用作降维或者计算tensor(图像)的平均值。reduce_mean(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)第一个参数input_tensor: 输入转载 2020-12-07 19:43:38 · 199 阅读 · 0 评论 -
tf.placeholder() is not compatible with eager execution的解决方法
最近安装了TensoFlow2.0及以上的版本都发现啊出现这个问题:RuntimeError: tf.placeholder() is not compatible with eager execution.这是因为在运行tf.compat.v1.placeholder(dtype, shape = None, name = None)的时候急切执行了这条语句,但是我们一般都是在一个Session前先去定义placeholder,但是不会去执行,然后再在Sesion上下文管理器中去传入我们的数据,转载 2020-12-07 18:43:01 · 1021 阅读 · 0 评论 -
tensorflow学习笔记-tensorflow基础框架
TensorFlow计算图张量(Tensor)张量分为:零阶张量、一阶张量、二阶张量 零阶张量:纯量或标量,也就是一个数值。比如 [1]。 一阶张量:向量,比如[1, 2, 3] 二阶张量: 矩阵,比如[[1, 2, 3], [4, 5, 6], [7, 8, 9]] 以此类推,还有三阶,三维的。。。TensorFlow计算图TensorFlow采用节点和线组...原创 2018-04-22 10:50:38 · 526 阅读 · 0 评论 -
TensorFlow-建造第一个神经网络
通过TensorFlow,实现一个两层的神经网络拟合二次函数定义数据import tensorflow as tfimport matplotlib.pyplot as pltimport numpy as np# fake datax = np.linspace(-1, 1, 100)[:, np.newaxis] # shape (100, 1)noi...原创 2018-04-22 16:39:15 · 264 阅读 · 0 评论 -
TensorFlow-- 启动TensorBoard并进行可视化
tensorboard可以可视化所建造出来的神经网络,有助于理解神经网络的内部结构和复杂运算,展示训练过程中绘制的图像、网络结构等。数据准备import tensorflow as tfwith tf.name_scope('input1'): input1=tf.constant([1.0,2.0,3.0],name="input1")with tf.name_scope...原创 2018-04-22 16:56:18 · 584 阅读 · 0 评论 -
tensorflow学习笔记--embedding_lookup()用法
embedding_lookup( )的用法 关于tensorflow中embedding_lookup( )的用法,在Udacity的word2vec会涉及到,本文将通俗的进行解释。首先看一段网上的简单代码:import tensorflow as tfimport numpy as npinput_ids = tf.placeholder(dtype=tf.int32, s...转载 2018-04-21 21:36:24 · 1729 阅读 · 0 评论