pandas.read_csv中的usecols函数实现读取指定列

本文介绍如何使用Pandas库中的read_csv函数读取CSV文件的特定列。通过提供列索引列表,如[0,1,2,3],可以轻松地选择并加载所需的列数据。

官方解释如下:

usecols : list-like or callable, default None
在这里插入图片描述
常用的用法为:pandas.read_csv(‘file_name.csv’, usecols = [0,1,2,3]) 读取0,1,2,3也就是前四列,中间的数可以任意指定

是的,`pandas.read_csv` 和 `np.genfromtxt` 都可以用于读取数据文件,但是它们在读取和处理数据时有一些区别。 `pandas.read_csv` 是 `pandas` 库中的函数,它专门用于读取和解析 CSV 文件。它返回的对象是 `pandas` 的 `DataFrame`,可以方便地对数据进行处理和分析。对于大多数常见的数据文件,`read_csv` 函数提供了更多的灵活性和功能,比如处理缺失值、选择特定的列、指定数据类型等。 `np.genfromtxt` 是 `numpy` 库中的函数,用于读取各种类型的文本文件。它返回的对象是一个 `numpy` 的多维数组(`ndarray`)。虽然 `genfromtxt` 函数也可以处理 CSV 文件,但相对于 `read_csv`,它的功能较为简单,不提供像处理缺失值、选择特定列等高级功能。 在数据类型方面,两者的默认行为是有所不同的。`np.genfromtxt` 函数根据数据内容进行类型推断,默认情况下,它将尝试将所有数据解析为浮点数。而 `pandas.read_csv` 函数会根据不同列的数据内容进行类型推断,并尽可能地保持原始数据类型。 您可以通过显式指定 `dtype` 参数来控制数据类型,以确保读取的数据与您的期望一致。无论是使用 `read_csv` 还是 `genfromtxt`,在读取数据之后,您都可以根据需要进行进一步的数据类型转换和处理。 总之,`pandas.read_csv` 和 `np.genfromtxt` 都是常用的读取数据文件的函数,但它们在功能和默认行为方面略有不同。具体使用哪个函数取决于您的需求和个人偏好。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值