传统统计学和机器学习的不同点
一道笔试题,当初解答的不满意,昨日看到吴喜之老师的《复杂数据统计方法》故摘录如下
1 机器学习的方法代表了统计的最新发展
2 传统的统计模型大多对数据有一定的要求或者假设,模型本身有比较明确的数学形式
关于模型的优劣,大多数依据对数据的分布假定得到的检验来判断。但是在在大多数情况下,人们无法对真实世界数据的分布做任何假设。
3 同时也很难想象复杂的现实世界能够用有限的数学公式来描述。机器学习对数据没有任何假定,产生的结果用交叉验证的方法来判断,摆脱了假设分布->明确数学模型来拟合->假设检验->p值的经典统计过程。机器学习基于算法或程序的模型预测效果相当好,而交叉验证的结果也容易被广大实际工作者理解。
又前些日子读到考研时候的统计学,在第一章又这么一句话“70年代以后,计算机的迅猛发展,以往因为计算繁杂而是的应用受到限制的统计方法变的简便易行”。没错,21世纪随着计算机运算力的大增数据来源的广博性,互联网现实需求的推动。机器学习的发展已经紧紧的拥抱了计算科学。这个趋势已经加速到使得传统统计学几乎被扫荡在角落里。
参考书籍:
1 复杂数据统计方法