Hamiton

"这篇博客探讨了如何使用动态规划解决Hamilton回路问题,即在一个无向图中找到一条通过每个顶点恰好一次的最短路径。通过数字的二进制状态表示路径,并利用状态转移方程dp[i][j]=min{dp[i^(1<<j)][k]+Weight[k][j]}
摘要由CSDN通过智能技术生成

Hamilton

定义
给定一张n个点的带权无向图,点从0~n-1标号,从0到n-1不重不漏地经过每个点恰好一次。

最短路径思路
用数字的二进制状态表示当前路径状态,0为没走过,1为走过,就可以遍历所有状态。

定义 dp[i][j]: i的二进制表示当前路径状态,j表示从1到j的最短路径。
则有 dp[i][j]前一状态为:dp[i^(1<<j)][k] "i^(1<<j)"表示第j位由1变为0
k必须存在,即(i>>k)&1==true。
状态转移方程为:dp[i][j]=min{dp[i^(1<<j)][k]+Weight[k][j]};

	memset(dp, 0x7ffffffff, sizeof(dp));
	dp[1][0] = 0;
	for (int i = 1; i < (1 << n); i++)
	{
		for (int j = 0; j < n; j++)
		{
			if ((i >> j) & 1)
			{
				for (int k = 0; k < n; k++)
				{
					if ((i - (1 << j) >> k) & 1)
					{
						dp[i][j] = min(dp[i][j], dp[i - (1 << j)][k] + w[k][j]);
					}
				}
			}
		}
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值