给一个天平,问如何用3次把这个小球找出来,并且求出这个小球是比其他的轻还是重
有12个球,其中有一个是假球,且与其它球的重量不同。用一个无法码天平称三次找出这个球,并确定比其它球重,或是轻。
先把12只球编号为1、2、3、4、5、6、7、8、9、10、11、12。再比较(1、2、3、4)与(5、6、7、8)。
[1]当(1、2、3、4)>(5、6、7、8)时,再比较(1、5、6)与(2、3、7)
[1.1]当 (1、5、6)>(2、3、7),说明5、6、2、3是好的,而1>7,比较1与2(2是好球)。
[1.1.1]当1>2时说明1比其它重;( 1>2,1>7à7=2)
[1.1.2]当1=2时,说明7比其它轻; ( 1>7,1=2à2>7)
[1.1.3]但是1不会小于2(因为1>7)
[1.2]当 (1、5、6)=(2、3、7),说明4与8里中不对,且4>8。比较4与1。
[1.2.1]当4>1时说明4比其它重;
[1.2.2]当4=1时,说明8比其它轻;
[1.2.3]但是4不会小于1(因为4>8)
[1.3]当 (1、5、6)<(2、3、7),说明5、6、2、3中不对。且(5、6)<(2、3)。比较(5、2)与(6、1)。
[1.3.1]当(5、2)=(6、1),说明3比其它重。
[1.3.2]当(5、2)>(6、1),说明2比其它重。
[1.3.3]当(5、2)<(6、1),说明5比其它轻。
[2]当(1、2、3、4)<(5、6、7、8)时,再比较(1、5、6)与(2、3、7)
与较方法与[1]相同。
[3]当(1、2、3、4)=(5、6、7、8)时,再比较(9、10)与(11、12)
[3.1]当 (9、10)>(11、12),比较9、11与10、1。
[3.1.1]当(9、11)>(10、1)时,说明9比其它重;
[3.1.2]当(9、11)<(10、1)时,说明10比其它重;
[3.1.3]当(9、11)=(10、1)时,说明12比其它轻;