大模型学习-RAG Query Construction

什么是Query Construction

典型的RAG方法将用户query转换为向量表示,然后将该向量与源文档的向量表示进行比较,找到具有最相似的向量表示的源文档。这种方式对非结构化数据相当有效,但对结构化数据呢?

世界上大部分数据都有一定的结构,这些数据大多存储在关系数据库(例如SQL)或图形数据库中,甚至非结构化数据也经常与结构化元数据(例如,作者、流派、发布时间等)相关联。许多用户query的最佳答案不仅是通过在embedding空间中找到相似的文档或数据,而且还利用数据中固有的以及在用户query中表达的结构。

例如,对于“what are movies about aliens in the year 1980”这个查询,一部分(aliens )可能要从语义上查找,但也有一部分("year == 1980")我们想以精确的方式查找。Query construction就是将自然语言查询转换为与之交互的数据库的查询语言。

下面我们将介绍三种典型的Query Construction的示例。

Text-to-metadata-filter

将query转换为合适的结构化语言,一以便进行有效地搜索和过滤。

Text-to-SQL

关系型数据库是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值