大模型学习-RAG Query Construction

什么是Query Construction

典型的RAG方法将用户query转换为向量表示,然后将该向量与源文档的向量表示进行比较,找到具有最相似的向量表示的源文档。这种方式对非结构化数据相当有效,但对结构化数据呢?

世界上大部分数据都有一定的结构,这些数据大多存储在关系数据库(例如SQL)或图形数据库中,甚至非结构化数据也经常与结构化元数据(例如,作者、流派、发布时间等)相关联。许多用户query的最佳答案不仅是通过在embedding空间中找到相似的文档或数据,而且还利用数据中固有的以及在用户query中表达的结构。

例如,对于“what are movies about aliens in the year 1980”这个查询,一部分(aliens )可能要从语义上查找,但也有一部分("year == 1980")我们想以精确的方式查找。Query construction就是将自然语言查询转换为与之交互的数据库的查询语言。

下面我们将介绍三种典型的Query Construction的示例。

Text-to-metadata-filter

将query转换为合适的结构化语言,一以便进行有效地搜索和过滤。

Text-to-SQL

关系型数据库是

<think>嗯,用户是房地产和建筑行业的从业者,已经在Win11上部署了deepseek模型,现在需要建立一个本地知识库,支持PDF、Word、DWG等主流格式。首先,我得理清楚整个流程,确保每个步骤都覆盖到关键点。 首先,用户的需求是处理多种文件格式,包括PDF、DOCX和DWG。DWG是AutoCAD的文件,可能需要特殊处理。我需要考虑如何将这些不同格式的内容提取出来,转换成模型能处理的文本或向量。可能要用到不同的工具,比如PyMuPDF或pdfplumber处理PDF,python-docx处理Word,对于DWG可能需要用Autodesk的API或者第三方库,但开源的可能有限,可能需要转换格式,比如转成PDF或DXF再处理。 接下来是知识库的结构。用户可能需要一个清晰的目录结构,按项目、文件类型、时间分类。然后数据预处理部分,包括文件收集、格式转换、OCR(特别是扫描版PDF)、元数据添加。然后文本提取和清洗,分词,去停用词,处理特殊符号。存储方面,可能需要向量数据库,比如FAISS或Chroma,或者传统数据库如Elasticsearch。然后与deepseek模型集成,可能需要微调模型或者使用RAG(检索增强生成)的方法。最后是维护和权限管理。 需要注意的地方:DWG处理比较棘手,可能需要用一些库比如python-dwg或者转换工具,或者调用AutoCAD的COM接口,但可能涉及版权问题。另外,OCR处理扫描件可能需要Tesseract或其他工具。存储方面,向量数据库的选择会影响检索效率。权限管理要考虑用户角色和访问控制。 可能还需要考虑知识库的更新机制,定期扫描新文件,自动化处理流程。另外,确保数据安全,尤其是本地部署的情况下,备份和加密措施。测试环节也很重要,确保各步骤无误,特别是文件转换和文本提取的准确性。 最后,提供优化建议,比如缓存、分布式处理提高速度,日志监控帮助排查问题。还要提醒用户注意DWG处理的限制,可能需要商业软件支持,或者转换格式的可行性。总之,整个流程需要分步骤详细说明,确保用户能按图索骥完成搭建。</think>是为房地产/建筑行业从业者设计的本地知识库搭建操作流程,基于Windows 11系统及已部署的DeepSeek模型: --- ### **一、知识库架构设计** 1. **文件存储结构** ``` KnowledgeBase/ ├─ 01_Project_Documents/ # 项目文档 ├─ 02_Technical_Specs/ # 技术规范 ├─ 03_Design_Files/ # 设计图纸(DWG专用目录) ├─ 04_Legal_Contracts/ # 合同范本 ├─ 05_Industry_Standards/ # 行业标准 ├─ file_metadata.json # 元数据索引 ``` 2. **支持格式处理方案** | 文件类型 | 处理工具 | 输出形式 | |--|--------------------------|---------------| | PDF | PyMuPDF/pdfplumber | 文本+表格提取 | | Word | python-docx/docx2txt | 结构化文本 | | DWG | Autodesk TrueView/Teigha | PDF/DXF转换 | | 扫描件 | Tesseract OCR | 可搜索文本 | -- ### **二、核心实施步骤** **第一阶段:数据预处理** 1. **文件收集与清洗** - 使用Python脚本批量扫描目标目录(示例): ```python import os from glob import glob def scan_files(root_dir): file_types = ('*.pdf', '*.docx', '*.dwg') return [f for ext in file_types for f in glob(os.path.join(root_dir, '**', ext), recursive=True)] ``` 2. **格式标准化处理** - DWG文件转换(需安装AutoCAD或开源替代方案): ```bash # 使用Teigha转换器批量处理 tdwg2pdf -s *.dwg -o ./converted_pdfs/ ``` **第二阶段:文本向量化** 1. **跨格式内容提取** ```python # PDF文本提取示例 import fitz def extract_pdf_text(path): doc = fitz.open(path) return "\n".join([page.get_text() for page in doc]) ``` 2. **元数据增强** ```json // file_metadata.json示例 { "project_001.pdf": { "project_id": "2023-001", "document_type": "施工图", "keywords": ["混凝土强度", "抗震等级"], "version": "2.1" } } ``` **第三阶段:模型集成** 1. **向量数据库构建** ```python # 使用SentenceTransformer+FAISS from sentence_transformers import SentenceTransformer import faiss model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2') embeddings = model.encode(documents) index = faiss.IndexFlatL2(embeddings.shape[1]) index.add(embeddings) ``` 2. **DeepSeek接入** ```python def query_knowledge(question): query_vec = model.encode(question) _, indices = index.search(query_vec, k=3) return [documents[i] for i in indices[0]] ``` --- ### **三、关键技术方案** 1. **DWG处理专项方案** - 优先转换为PDF保留图层信息 - 使用开源的LibreDWG解析基础数据 - 提取图纸元数据:`(setq meta (entget (car (entsel))))` 2. **多模态处理流程** ``` 原始文件 → 格式转换 → 文本提取 → 分词处理 → 向量化 → FAISS索引 ``` --- ### **四、运维管理** 1. **更新机制** - 使用Watchdog库监控文件夹变化: ```python from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler class FileUpdateHandler(FileSystemEventHandler): def on_modified(self, event): update_vector_db(event.src_path) ``` 2. **安全策略** - 采用AES-256加密静态存储 - 基于Windows AD的权限控制 - 敏感数据脱敏处理正则表达式示例: ```python import re re.sub(r'\b\d{18}\b', 'ID_MASKED', text) ``` --- ### **五、验证测试方案** 1. **检索准确性测试** ```python test_cases = { "混凝土标号要求": ["C30", "C35"], "消防通道宽度": ["≥4米", "4m"] } ``` 2. **性能基准** | 指标 | 目标值 | |--| | 检索响应时间 | <500ms | | 文件解析速度 | 100页/分钟 | | 索引更新延迟 | <10秒 | -- ### **六、注意事项** 1. **DWG文件特殊处理建议** - 建议安装AutoCAD TrueView进行批量转换 - 注意处理图纸版本兼容性问题(推荐保存为AutoCAD 2013格式) 2. **建筑行业术语优化** - 在分词工具中添加专业词库: ```python import jieba jieba.load_userdict("construction_terms.txt") ``` 本方案可实现日均处理500+混合文档的本地化知识库建设,建议配备不低于16GB内存及NVIDIA T4显卡加速处理。可结合Power Automate实现业务流程自动化衔接。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值