深度学习-过拟合和欠拟合

过拟合和欠拟合都属于模型泛化能力不强的两种原因,均是模型学习能力和数据复杂性失调的表现。

1.过拟合

在训练集效果好,验证集和测试集效果差。验证集loss先降后升。

原因:训练集数据不足,类型单一。存在噪声,指的是有干扰数据,很多错误的特征。而导致忽略真实的样本特征。模型复杂度过高。

解决办法:样本均匀,数据进行清洗,防止噪声数据干扰模型。降低模型复杂度。正则化,添加dropout、L1、L2.。交叉检验。早停策略。

2.欠拟合

训练集、验证集和测试集效果都很差。

原因:模型没有充分学到数据的信息特征。

解决办法:提高模型复杂度、特征工程,添加更多的特征信息、减少正则化系数、集成学习方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值